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Abstract 
 
Knowledge discovery from temporal, spatial and 
spatiotemporal data is critical for climate change 
science and climate impacts. Climate statistics is a 
mature area. However, recent growth in observations 
and model outputs, combined with the increased 
availability of geographical data, presents new 
opportunities for data miners. This paper maps climate 
requirements to solutions available in temporal, 
spatial and spatiotemporal data mining. The 
challenges result from long-range, long-memory and 
possibly nonlinear dependence, nonlinear dynamical 
behavior, presence of thresholds, importance of 
extreme events or extreme regional stresses caused by 
global climate change, uncertainty quantification, and 
the interaction of climate change with the natural and 
built environments. This paper makes a case for the 
development of novel algorithms to address these 
issues, discusses the recent literature, and proposes 
new directions. An illustrative case study presented 
here suggests that even relatively simple data mining 
approaches can provide new scientific insights with 
high societal impacts.   

 
1. Introduction 
 

The Fourth Assessment Report (AR4) of the 
Intergovernmental Panel on Climate Change (IPCC) 
[1] clearly points to anthropogenic greenhouse gas 
emissions as the cause of global warming. This has 
been possible by the analysis of massive volumes of 
observations from sensors as well as precise outputs 
from global-scale climate models. 

Climate related observations from remote sensors 
like satellites and weather radars or from in situ 
sensors and sensor networks, as well as outputs of 
climate or earth system models from large-scale 
computational platforms, yield terabytes of temporal, 
spatial and spatiotemporal data. In addition, the rapid 

growth of geographical information systems implies 
availability of multi-source data to inform climate 
impacts analysis. However, the rate of data generation 
and storage far exceeds the rate of data analyses. This 
represents lost opportunities in terms of scientific 
insights not gained and impacts or adaptation strategies 
not adequately informed. While there is a mature 
literature in climate statistics and scattered applications 
of data mining, systematic efforts in climate data 
mining are lacking. The time is ripe for the spatial and 
spatiotemporal data mining (SSTDM) community to 
take a lead in this area. SSTDM deals with dependence 
of learning samples and auto- or cross-correlations. 
Climate data are geographical and hence inherit the 
spatial or temporal correlation properties. Additional 
challenges stem from nonlinear dependence, long 
memory processes in time, and long-range dependence 
or teleconnections in space. Post-AR4, the emphasis in 
climate research has shifted from global change at 
century scales to regional change and impacts at 
decadal scales. In particular, the need to develop 
anticipatory insights about extreme weather and 
hydrological events, as well as extreme hydro-
meteorological stresses caused by regional change, has 
been recognized. The analysis results need to inform 
regional impacts assessments, which in turn use 
geographic data about the environment, land use, 
infrastructures and population. A major challenge in 
the analysis of extremes, regional change, and 
corresponding impacts, is the characterization of 
uncertainty for risk-informed decision making. 

 
2. Motivation 

 
According to [1], “it is very likely that hot extremes, 

heat waves, and heavy precipitation events will 
continue to become more frequent”. In addition to 
probable increase in intensity-duration-frequency 
(IDF) of extreme events and consequent exacerbation 
of natural hazards, [1] also mentions that regional 
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climate change is expected to cause stresses to the 
environment and society owing to increased 
temperatures and regional changes in precipitation 
patterns. Increase in global population, especially in 
the vulnerable regions of the world, may result in loss 
of human lives and reduction of living conditions, 
caused by acute scarcity of natural resources, greater 
damage from natural disasters, as well as large-scale 
migration. Climate change is expected to be a major 
contributor and/or exacerbate an already worsening 
situation in developing countries. Developed countries 
may have to face the brunt of the migration and may be 
called upon to provide disaster and humanitarian relief. 
The economic damage from weather or hydrologic 
extremes may actually be higher in developed nations 
because of greater exposed assets. In a climate change 
war game organized by the Center for a New American 
Security (CNAS), these very issues were debated 
through role playing. The war game was covered in a 
Nature news article [2], which also mentioned that the 
climate change scenarios [3] were provided by the Oak 
Ridge National Laboratory (ORNL). As a source of 
climate change assessments to multiple agencies, 
ORNL recognizes that perhaps one of the most 
significant challenges is the generation of credible 
information at local to regional scales for resource 
managers and policy makers. The core needs are the 
generation of predictive insights, risk management, 
and uncertainty characterization, with the ultimate aim 
of informing adaptation and mitigation decisions. 

One of the primary climate models used by the 
IPCC is the Community Climate System Model 
version 3 (CCSM3) developed jointly by the National 
Center for Atmospheric Research (NCAR) and ORNL. 
Generating a set of outputs from a model like CCSM3 
is a non-trivial computational exercise (e.g., [5]). The 
models are run from 1870 till now in “hindcast” mode 
and from 2000 to 2100 in projection mode. Future 
climate simulated by models depend on greenhouse 
gas emissions, which in turn depend on future socio-
economic factors. These are captured through the 
IPCC Special Reports Emissions Scenarios (SRES) 
[1]: there are a total of 40 SRES scenarios. Ensemble 
runs are generated corresponding to each scenario, and 
take into account the facts that climate systems are 
potentially chaotic and hence sensitive to initial 
conditions or that model parameters are uncertain. 
Ensembles of multiple models are also available. The 
number of ensembles per scenario typically varies 
from a few to a few tens. The CCSM3 model generates 
over 100 output variables at spatial resolutions of 1.4 
lat-long degree grids and 6-hour time resolutions for 
the surface and for several atmospheric layers, with 
global coverage. Thus, each run may correspond to a 

few terabytes of data and the total number of runs may 
run into several hundreds. The generation of risk 
profiles and uncertainty assessments at regional scales 
for the entire globe requires a detailed analysis of 
multiple model runs. The model outputs (hindcasts and 
prior projections) need to be compared with 
observations, which in turn may be obtained from 
satellites and remote sensors or historical archives of 
station measurements and in situ sensors. Remote 
sensors (e.g., NASA’s Earth Observing Satellites) and 
environmental sensor networks generate massive 
volumes of data at rates higher than they are analyzed.           

The massive volumes of climate related 
observations and climate model outputs are 
dimensioned by space and time; hence theoretical 
principles of SSTDM [6-7] remain valid. However, 
mining or analysis of climate data presents unique 
challenges. SSTDM methodologies may need to be 
significantly adapted or new approaches may have to 
be developed by drawing from multiple disciplinary 
areas, for example, statistics, mathematics, computer 
science, nonlinear dynamics and operations research. 
Finally, risk and uncertainty management requires 
analysis of impacts on lives, economy and the 
environment, and hence integration of geographic data. 

This paper is an attempt to bridge the gap between 
climate scientists and the SSTDM community. A 
comprehensive overview of SSTDM [7] is used as a 
basis for formulating key climate data mining 
challenges. Adaptations of SSTDM concepts as well as 
unique challenges in climate are described. A case 
study illustrates how a simple data mining application 
led to new insights in climate science beyond 
published results in the literature (e.g., Science 
magazine: [8-10]). 
 
3. Contributions 
 

The primary contributions of this paper are three-
fold: (a) introduction of climate challenges to the data 
mining (specifically the SSTDM) community to 
motivate future research (Sections 1-2), (b) defining 
the climate data mining problem by comparing and 
contrasting with SSTDM (Section 4), and (c) 
presenting a case study to demonstrate how even 
simple data mining applications can lead to novel 
insights in climate science. 

We select heat waves for the illustrative case study 
because (a) mean and extremes of temperature are 
better predicted from climate models compared to 
other variables [1]; (b) Europe is known to be 
particularly vulnerable to heat waves, and (c) a recent 
Science paper [8] discussed these topics. The analysis 
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of Spain is an attempt to quantify one aspect of the 
“Africanization of Spain” issue which has been getting 
significant attention in the international media  
(e.g., [11]), among Spanish policy makers, as well as 
world bodies. We discuss uncertainty and population 
impacts [12] because the climate science community 
has barely begun to address some of these issues in 
depth, hence even a simple case like the one presented 
here clearly demonstrates the value-add from SSTDM.       

 
4. Climate Data Mining 
 
4.1 Knowledge Discovery Requirements 

 
There is a scale disparity between atmospheric, 

hydrological and land process models on the one hand 
and water, energy, environmental or infrastructural 
impacts assessments on the other. One purpose of 
knowledge discovery in climate is to build a bridge 
between these disparate scales. Thus, climate model 
outputs at lower resolutions need to be downscaled to 
higher resolution impacts assessments, not just to 
provide guidance on mean values at local to regional 
scales but also for extreme events and extreme stresses 
caused by regional change. The need to provide 
credible information from climate models all the way 
to impacts assessments implicitly touches upon 
uncertainty reduction, risk formulations and 
uncertainty characterization.  

The Knowledge Discovery (KD) challenge for 
climate is depicted schematically in Fig. 1. The spatial 
scales are currently about 100 km2 for climate models 
and anywhere from 10’s of meters to 10’s of 
kilometers for impacts assessments and decisions. 
Climate model analyses are credible at decadal trends 
(e.g., behavior of monthly averages or extremes in one 

future decade compared with the current decade), 
while the temporal horizons for decision making, 
infrastructural impacts assessments or mitigation 
policy decisions may range from a few days to 
decades. The downscaling issue can be solved in 
variety of ways, but the key requirement is one of 
uncertainty reduction and assessment.  

Two major KD areas are (a) data analysis and 
mining, which extracts patterns from massive volumes 
of climate related observations and model outputs and 
(b) data-guided modeling and simulation (e.g., models 
of water and energy or other assessments of impacts) 
which take downscaled outputs as the inputs. Data 
fusion is broadly construed to describe a set of 
capabilities which can deal with multiple ensembles 
(e.g., based on clustering approaches) and scenarios 
(e.g., based on co-occurrence and persistence of space-
time features), handle cascading uncertainty from 
models to downscaled outputs to impacts, and develop 
actionable predictive insights based on geographical 
information about impacted population and 
infrastructures.  

Knowledge Management (KM) systems and data 
repositories serve as enablers of and feeders to the KD 
process while scalable visualizations and decision 
support systems present the KD results in an intuitive 
manner for dissemination to scientists, modelers, 
resource managers, decision makers and policy 
makers. 

A preliminary illustration of KD in climate impacts 
is shown in Fig. 2. Daily precipitation observations at 
2.5o spatial grids from 1940 to 2004 (top left) in South 
America are used to extract information about extreme 
values based on a Generalized Pareto Distribution 
(GPD). An extremes volatility index (ratio of the 50-
year and the 200-year return levels subtracted from 
unity) is calculated (bottom left). The extremes 
volatility ratio relates to the shape parameter of the 
GPD and provides an intuitive measure of “surprise” 
(e.g., the stress on an infrastructure which is designed 
to last a 50-year storm when a 200-year storm occurs), 
which can be roughly interpreted as a likelihood 
measure. The middle panels show population counts 
from the LandScan Global database [4], which is 
assumed in this preliminary study to scale linearly with 
exposed assets (lives and economy). A product of the 
hazard likelihood and the cost (exposure scaled by 
coping ability or resilience, roughly approximated here 
by the GDP of a nation) yields anticipated risks, which 
in turn can be used to optimize resources for disaster 
preparedness and humanitarian aid. 

Figure 1. Knowledge Discovery in Climate 
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4.2 Correlations and Extremes 

 
The theoretical foundations of SSTDM rely on the 

premise that learning samples are not independent and 
hence traditional data mining methods are inadequate. 
Correlations and seasonal effects, which are typically 
ignored by traditional data mining, must be considered 
in time series and spatial statistics, as well as SSTDM. 

The entire field of time series analysis [13] and 
forecasting relies on the autocorrelation function 
(ACF) and the Fourier transform of the ACF as a 
fundamental concept. Spatial statistics and SSTDM 
owe their origins to these concepts, which were 
originally developed in time series. However, in time 
series, there are at least a couple of conditions under 
which the ACF is inadequate or inappropriate: (a) non-
stationary data and (b) nonlinear behavior. Certain 
non-stationary or nonlinear behavior can be 
approximated by ACF-based analysis, often after 
simple stabilization transformations. However, not all 
types of non-stationarity can be handled in a simplistic 
manner, while for certain kinds of nonlinear behavior, 
a whole other set of tools may be appropriate [14]. In 
all cases, the dependence among time series, whether 
linear or nonlinear, remains important. One form of 
dependence, long-memory processes [15], is in 
principle captured by ACF but may be difficult to 
handle.  

The uniqueness of spatial [16-17] and 
spatiotemporal statistics [18] arises to a great extent 
from auto- or cross-correlations among variables in 
multiple directions. SSTDM draws upon the insights 
developed in these areas when it attempts to extend 
traditional data mining by relaxing the explicit or 
implicit independence assumptions. Climate data 
mining inherits these challenges from SSTDM since 

climate data are geographical. However, the ability to 
develop scalable computational solutions for 
challenges unique to climate data analysis [19] is 
important. In the context of correlation and 
dependence, these include long-memory temporal 
processes, long-range spatial dependence (e.g., 
“teleconnections”) and nonlinear dependence. Thus, 
the theoretical foundations of climate data mining need 
to inherit from both SSTDM and nonlinear, non-
stationary time (and space-time) series analyses.  

A second major challenge in climate data mining is 
the importance of extremes, both extreme hydro-
meteorological events as well as extreme hydro-
meteorological stresses caused by regional change. The 
fact that understanding and modeling deviations from 
the norm are typically more important than the ability 
to model the norm makes statistical estimation difficult 
and represents an important departure from many 
traditional data mining approaches. In the context of 
climate change, extreme events could refer to 
intensity-duration-frequency (IDF) of heat waves or 
large precipitation events and droughts, while extreme 
stresses could be caused by a region getting hotter and 
dryer like the Western United States [10]. The 
uncertainty and validation problems become acute 
when extremes are of interest. Thus, historical and 
recent observations need to be investigated in depth 
and compared with climate model hindcasts to estimate 
the ability of the model to capture extremes, develop 
uncertainty bounds and potentially help narrow these 
bounds, as well as develop projections of future 
extremes by statistical analysis of model outputs and 
uncertainty. In addition, extremes are not just high or 
low values or large stresses in the natural systems, but 
their interactions with built and social environments. 
Thus, hurricane Katrina is remembered till date not just 
because that was a Category 5 but also because a levee 
broke causing flooding in New Orleans, which in turn 
resulted in loss of lives and property at a scale 
unprecedented in recent years for a developed nation.  

Figure 2. End-to-End Knowledge Discovery [35] 

A major generic challenge in climate data mining 
results from the nature of historical observations. In 
recent years, climate model outputs and remote or in 
situ sensor observations have grown rapidly. However, 
for climate and geophysics, historical data may still be 
noisy and incomplete, with uncertainty and 
incompleteness typically increasing deeper into the 
past. Therefore, in climate data mining the need to 
develop scalable solutions for massive geographical 
data co-exist with the need to develop solutions for 
noisy and incomplete data.  

These issues complicate the study of correlations 
and extremes, especially when the dependence is 
nonlinear or when extremes / anomalies are correlated.      
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4.3 Relation with State-of-the-Art SSTDM 
 
This sub-section compares and contrasts climate 

data mining with SSTDM challenges described in [7]. 
1. Spatial Data: The so called first law of geography 

regarding proximity based relations is valid for 
climate. In addition, the presence of long-range spatial 
dependence (teleconnections), long memory processes 
and nonlinear dependence are important. The need to 
go deep into time and far out in space for the 
extraction of correlations makes automation of 
knowledge discovery a challenging computational 
task. The mutual information (MI) provides a way to 
measure nonlinear correlations. Recipes for MI 
computations include kernel density estimators, k-
nearest neighbors, Edgeworth partitioning of 
differential entropy and adaptive partitioning of the 
XY plane [20]. The base algorithms for these 
approaches are typically amenable to efficient 
computational implementations.   

2. Prediction and Classification: Input output pairs 
denoted by (xi, yi) are classified (i.e., “the input vectors 
xi are assigned to a few discrete number of classes yi”) 
or regressed (i.e., approximated by a function of the 
form y ≡ f(x) and used for prediction). In climate 
applications, statistical predictions based on 
observations are valid in a steady climate, but not 
under climate change scenarios. Therefore, for climate 
change, large scale physically-based climate models 
like CCSM3 are used, where a set of partial differential 
equations describe the evolution of the vector of state 
variables according to physical laws.   

Predictive insights based on statistical models are 
useful for short leads or spatial downscaling and for 
natural climatic oscillations (e.g., the El Nino Southern 
Oscillation). Consider the Spatial Autoregressive 
(SAR) model [7]: y = ρWy + Xβ + ε.  In climate 
applications like downscaling, the downscaled value 
on any one high-resolution grid may depend on its own 
neighbors as well as the low resolution variables. Thus, 
surrogates for the “convective available potential 
energy” from climate model outputs, or topographical 
information from remote sensing, may have 
information content about convective precipitation 
over and above what is already contained in the 
projected precipitation from the climate model. In this 
sense SAR appears well-suited. However, linear and 
stationary approaches cannot be necessarily assumed 
for climate applications. Thus, rather than using linear 
regression and linear AR coefficients, a nonlinear form 
may need to be prescribed. Support vector machines 
may be one way to handle nonlinear regressions in this 
context. The approach can be compared with [21], 

where a neural network based version of the ARMA 
was used to downscale numerical weather prediction 
model outputs. The equation becomes: y = f1(y) + f2(X) 
+ ε, where the two functional forms were modeled 
independently with relatively simple neural networks 
(multilayer perceptrons) in an ensemble mode. In 
general, climate predictions are based on nonlinear 
dynamical tools (e.g., [21-22]).  

Classification is useful in situations where regions 
need to be grouped into known categories based on 
climate conditions. Thus, if the classes yi are the 
known climate categories (e.g., tundra) and the input 
vectors are climate observation or projections (e.g., 
mean and extremes of temperature and precipitation), 
then the probability of a particular grid or region 
belonging to a class is given as p(yi|x), which by 
Bayes’ theorem becomes [p(x|yi) * p(yi) / p(yi|x)] 
leading to the discriminant function gi(x) = ln p(x|yi) + 
ln p(yi) as described in [7]. One other example of 
classification is when sea surface temperature 
anomalies need to be processed through dimensionality 
reduction algorithms (e.g., empirical orthogonal 
functions) and classified into categories (e.g., an “El 
Nino” year). Climate applications may require 
nonlinear dimensionality reduction, for example, 
manifold learning like LLE or ISOMAP [23-25].   

3. Outlier Detection: A spatial outlier has been 
informally defined as “a local instability (in values of 
non spatial attributes) of a spatially referenced object 
whose non spatial attributes are extreme relative to its 
neighbors, even though the attributes may not be 
significantly different from the entire population” [7]. 
The tests for detecting spatial outliers include finding 
outlying points in variogram cloud and Moran 
scatterplots, while for normally distributed spatial data 
S(x), a normalized spatial statistic is often used [7]: 
ZS(x) = |{(S(x)–µs) / σs}| > θ. Extensions to 
spatiotemporal data and/or for multiple attributes are 
conceptually straightforward. In climate data, outliers 
such as these may arise because of, for example, 
measurement errors or anthropogenic influence (e.g., 
urban heat island effect or sudden deforestation). 

An intriguing problem in climate data mining is the 
need to distinguish between a measurement error 
(alternatively, any outlier generated by non-repeatable 
conditions) versus recurring but low probability 
patterns (e.g., 100-year extremes) and nonlinear effects 
(e.g., chaotic dynamics and transition behavior). An 
approach to distinguish chaos versus measurement 
error was presented by [26], which used short-term 
predictability. However, the possibility of 
distinguishing recurring extreme values or sudden or 
small sustained change from noise or measurement 
errors needs to be investigated in more depth.  
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Extreme value theory [27] is a statistical theory that 
develops parametric approaches to infer low 
probability high or low values based on analysis of 
values that are above certain thresholds but not 
necessarily low probability extremes. The development 
and use of extreme value theory for space-time climate 
applications was motivated by the IPCC [28]. Case 
studies with precipitation extremes are presented in 
[29-30], in the context of univariate extremes based on 
the Generalized Pareto Distribution (GPD) and copula 
based multivariate extremes dependence. While 
statistical definitions and theories are necessary for a 
rigorous study of extremes, user definitions based on 
impacts may be more meaningful to non-scientists and 
decision makers. In either case, a systematic 
exploration of the statistical properties may help 
distinguish recurrent and non-repeating patterns.  

The presence of small sustained change is relatively 
easier to distinguish from outliers. The method 
proposed by [31] for network data and refined by [32] 
in the context of remote sensing change detection 
offers a first step, but may need to be refined for 
climate applications [36]. 

4. Co-Location and Clustering: Clustering, or the 
process of categorization, is used in many SSTDM 
applications. Multivariate clusters have been used to 
categorize climate regimes [33] and extract climate 
indices [37]. According to [7], “one important 
application of clustering is hot spot detection”. 
However, in general, supervised, or at least semi-
supervised, approaches which utilize both the data and 
any available domain knowledge may be better suited 
for climate applications. 

Co-location or associations among variables has not 
been used as much in the climate change literature but 
may become very useful when impacts of climate on 
infrastructures are quantified in a rigorous manner, 
especially infrastructural grids like water or energy 
(electric) grids are considered. 

5. Uncertainty and Risks: The characterization of 
unknown probabilities (uncertainty) and management 
of known probabilities (risks) uses the results of data 
mining to develop value-added decision support 
solutions. The need to deal with ensembles of initial 
conditions (to manage chaotic dynamics), model 
parameters (e.g., Monte Carlo type analysis), model 
physics (multi-model ensembles) and future conditions 
(scenarios of emissions and impacts) make the tasks 
computationally challenging. The integration of 
disparate data for the comprehensive characterization 
of uncertainty and risk management becomes a major 
challenge. 
 

4.4 Computational Challenges 
 
The computational challenges for SSTDM are 

presented in [7]. The unique considerations for climate 
data mining have been discussed in brief earlier. Here 
we focus on one specific example, which is of 
immediate concern to our ongoing research and the 
case study. 

The CCSM3 global climate models output data for 
a single ensemble run of the A1FI (fossil fuel 
intensive) scenario are available at daily intervals in 
1.4º × 1.4º grids (or cells ~100km2), from 2000 to 
2099. The data size makes even simple analyses (e.g. 
range, mean, and exceedance computations) a non-
trivial task from a computational perspective.  Thus, 
we are currently working which has a dataset with 100 
years of daily data for the IPCC A1FI scenario with 
100+ variables (the atmosphere models have 26 
layers). The data has a size of approximately 850GB 
on disk and rough calculations show that loading the 
entire dataset at the surface level only (single layer) 
would require 480GB of memory. Preliminary tests on 
a desktop computer (3Ghz Pentium 4, 1GB RAM, 
Windows XP Pro.) indicate that computing mean, 
standard deviation, and exceedances in a sliding 
window for a subset of eight variables on a desktop 
machine would take nearly a week. High-performance 
computing can mitigate this problem to some extent 
but straightforward programming implementations are 
only possible when the task is “embarrassingly 
parallel”, as in the example here. In this case, the data 
can be divided into disjoint subsets and distributed to 
many processors in a large-scale system performing 
independent computations (although, data management 
and distribution issues must be considered). However, 
more powerful analysis methods require simultaneous 
access to data from multiple geographic locations and 
time intervals, demanding more sophisticated 
algorithmic solutions for efficient parallel 
implementation. Specifically, we are interested in 
studying climate extremes such as heat waves, floods, 
or droughts, and underlying the analysis of such 
phenomena is a hierarchy of increasingly complex 
statistical techniques, ranging from (for example) grid 
counting and dimensionality reduction to space-time 
linear or nonlinear correlations, geographically 
weighted regressions and computation of the intensity-
duration-frequency of extreme events or extreme 
stresses as well as the trends thereof. 

One step toward achieving these goals would be a 
comprehensive scientific data mining toolkit designed 
specifically for large-scale climate data analysis tasks, 
e.g., an extension of [38]. 
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Figure 3. Model vs. Observed Extreme Heat Events and Population for the Present Time (2000-2007) in Europe 

Figure 4. Projected Extreme Heat Events and Population for the Middle and End of the 21st Century in Europe
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5. Case Study 
 

In this section, we provide an illustrative example 
of mining spatiotemporal climate data and demonstrate 
that even an application of simple analysis techniques 
can lead to novel insights for climate change. 
Specifically, we describe a case study on temperature 
extremes (heat waves) consisting of three parts: first, 
we compare model projections for the present time to 
observed data and extract uncertainty bounds; second, 
we consider future projections and examine the 
potential effects of uncertainty on predictions; finally, 
we focus on one particular region and discuss the 
possible impacts of projected climate change. 

 
5.1 Data Sources 

 
This study used data from multiple disparate 

sources. Climate projections were based on IPCC 
SRES A1FI, the worst-case fossil fuel intensive 
scenario which nonetheless has started to look credible 
in recent years with increased trends in temperature 
observations. The model simulations were performed 
at ORNL and NCAR and output data are available 
through the Earth System Grid (ESG). The observation 
data was compiled by the National Centers for 
Environmental Prediction (NCEP) and are available 
for download on the NOAA Earth System Research 
Laboratory (ESRL) website. Population projections for 
Europe are based on the IPCC SRES A1FI population, 
followed by downscaling to country-levels by the 
Center for International Earth Science Information 
Network (CIESIN) at Columbia University, while the 
grid-based allocations were done based on current 
LandScan data from ORNL [4]. The grid-based 
allocations are preliminary, since future allocations are 
assumed to remain identical to the current. 

 
5.2 Methodology: Extremes and Uncertainty 
 

A heat wave can be defined in many different ways, 
for example as the exceedance of temperature over a 
threshold or as a period of sustained high temperatures. 
Here, we choose a definition from a couple of prior 
studies of the 1995 Chicago heat wave [8, 34], which 
focuses on an annual event marked by several 
consecutive nights with persistent high temperatures. 
Specifically, this annual “worst heat event” is defined 
as the mean over the three-day period with the highest 
average nighttime low temperature. All temperature 

measurements are taken at reference height of 2m 
above the earth’s surface. 

As a first order estimate of uncertainty in the model, 
we use the difference (absolute value) between the 
outputs and observations from the same time period. 
The upper/lower bounds for model projections are then 
created by adding/subtracting the difference to/from 
the model outputs. Note that this definition provides 
only a rough and possibly conservative estimate of 
uncertainty as we might expect the bounds to expand 
as we project further into the future. 

In this study we consider three periods at the 
beginning, middle, and end of the 21st century: the 
present time (2000-2007 only to allow for comparison 
to observations), 2045-2054, and 2090-2099. For each 
period we take the average of annual worst heat events 
and visualize these values using a (commercial) GIS. 

Figure 3 shows the worst three-day heat events from 
the model as well as the observed values (left panels), 
and by visual inspection we can glean a fair amount of 
agreement between the two. The top right panel shows 
the difference between the observed and the model 
values, where blue indicates areas where the model 
suggested higher temperatures than observed while red 
shows areas with lower predicted temperatures than 
observed. We find that the model tends to overpredict 
at lower latitudes (e.g., Greece, the Balkans, Italy, 
Spain) and underpredict at higher latitudes (e.g., 
Germany, Poland, UK, Scandinavia). With the 
exception of the region in the far Northwest, the model 
performs better over bodies of water than it does over 
land. The bottom right panels shows the current 
distribution of population in Europe. 

Next, we examine the climate model projections for 
2045-2054 (left) and 2090-2099 (right) in Figure 4. 
The top row corresponds to the actual model outputs; 
the next two rows show lower and upper bounds given 
the uncertainty estimates, respectively; the bottom row 
shows population projections (difference). These data 
provide several interesting insights. Most notably, we 
see a trend of increasing intensity in extreme events 
over time. Even the best case (lower bound), while still 
comparable to current levels at 2050, shows a 
significant increase in extreme temperatures across all 
of Europe by the end of the century. Moreover, the 
average and especially the worst case (upper bound) 
paint a grim picture, with sustained nighttime lows 
above 30ºC around the Mediterranean Sea and well 
into the 20s over much of the continent. Note that the 
A1FI population is expected to grow in the West but 
decrease in Eastern Europe by the end of the century. 
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Figure 5. Observed and Projected Extreme Heat Events (Upper Bound Only) and Population in Spain

5.3 Local Study: Africanization of Spain 
 

Spain has recently received press (e.g., see [11]) for 
its threat of “Africanization”, a combination of 
increasing temperatures and decreasing precipitation. 
We concentrate on Spain for our local case study. 

Figure 5 shows extreme heat events (left) and 
population (right) for each of the three time periods. 
Note that the top left panel represent observations for 
the present time, while the bottom two panels in that 
column depict the upper bound for the middle and end 
of the century, respectively. From the top left panel we 
find that the observed events are limited to moderate 
temperatures ranging from 17ºC around Madrid to 
24ºC along the Mediterranean coast. In contrast, the 
middle left panel shows a drastic increase in intensity, 
with sustained nighttime temperatures reaching 35ºC. 
The increasing trend is projected to continue through 
the end of the century, when nearly half of the country 
can expect nightly heat waves exceeding 35ºC. 

Intense heat waves may have direct impacts on 
human lives and well-being as well as indirect effects 
on scarcity of water and agriculture. The top right 
panel shows the current population of Spain, and the 
next two panels the projected difference for the future 
periods. Note that significant growth is expected, 

especially around the existing urban centers (including 
Porto and Lisboa in Portugal, which are similarly 
affected by these changes). Focusing again on Madrid, 
the model projects a worst-case scenario of nearly 
20ºC higher nighttime temperature extremes between 
now and the end of the century, along with moderate to 
strong population growth in and around the city. 
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