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ABSTRACT
Climate change is a pressing focus of research, social and
economic concern, and political attention. According to the
Fourth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC), increased frequency of extreme
events will only intensify the occurrence of natural hazards,
affecting global population, health, and economies. It is of
keen interest to identify “regions” of similar climatological
behavior to discover spatial relationships in climate vari-
ables, including long-range teleconnections. To that end, we
consider a complex networks-based representation of climate
data. Cross correlation is used to weight network edges, thus
respecting the temporal nature of the data, and a commu-
nity detection algorithm identifies multivariate clusters. Ex-
amining networks for consecutive periods allows us to study
structural changes over time. We show that communities
have a climatological interpretation and that disturbances
in structure can be an indicator of climate events (or lack
thereof). Finally, we discuss how this model can be applied
for the discovery of more complex concepts such as unknown
teleconnections or the development of multivariate climate
indices and predictive insights.

1. INTRODUCTION
Identifying and analyzing patterns in global climate is im-
portant because it helps scientists develop a deeper under-
standing of the complex processes contributing to observed
phenomena. One interesting task is the discovery of climate
regions (areas that exhibit similar climatological behavior,
e.g., [14]), which has been addressed with various clustering
methods. While k-means [5; 7] works well with multivariate
data, it is limited to finding clusters of relatively uniform
size and density, while largely ignoring the temporal nature
of the domain.

Alternate clustering approaches have been explored to ad-
dress the space-time aspect of the data, including a weighted
k-means kernel with spatial constraints [17] and a shared-
nearest neighbor method to discover climate indices [24]
from sea surface temperature data [18]. However, none of
these approaches provides a means for explicitly identifying
clusters from multivariate spatio-temporal data.

In this paper, we consider a different perspective on analyz-
ing climate data. Instead of clustering based on univariate
similarity or spatial proximity, we model the data as a net-

work of interacting nodes [21]. We map the spatio-temporal
grid to a network and use a cross correlation-based measure

of similarity on climatic variables to created weighted edges
(or connections) between them. Edge placement is deter-
mined only by the relationship among variables and is not
subject to spatial constraints; a community detection algo-
rithm discovers clusters corresponding to climate regions.
This network view captures complex relationships and is
able to identify patterns that span both space and time.

The concept of complex networks has been used to derive in-
teresting climate insights. For example, [19] and [23] found
that changes in network structure give predictive insights
about El Niño events. A network of different climate in-
dices was used to explain major climate shifts of the 20th
century as transitions between different equilibria of oscilla-
tors representing the earth system [20]. While all of these
studies were hypothesis-driven, we believe that similar in-
novations are also possible with respect to the discovery of
climate regions using a data-driven approach. We also show
that communities have a climatological interpretation and
that disturbances in structure can be an indicator of cli-
mate events (or lack thereof). Finally, we discuss how this
model can be applied for the discovery of more complex con-
cepts such as unknown teleconnections or the development
of multivariate climate indices and predictive insights.

In section 2 we introduce the dataset used for this study.
Section 3 describes the methodology in detail, and the em-
pirical evaluation is presented in section 4. We conclude
with a discussion placing this work in the broader context
of climate science and identifying directions for future work.

2. HISTORICAL CLIMATE DATA
The Earth science data for our analysis stems from the
NCEP/NCAR Reanalysis project [10], which is publicly ac-
cessible for download at [26]. This dataset is constructed by
fusing and assimilating measurements from heterogeneous
remote and in-situ sensors. Variable selection is an impor-
tant issue in this context, one we have not yet fully explored.
Previous research has relied on domain expertise for an ap-
propriate selection [19; 21; 23]; alternatively, an objective
feature selection approach could be used.



Figure 1: Climate observations near Paris, France (47.5◦N 2.5◦E) from 1948 to 2007 with trend lines

For the purpose of this study, we selected four variables with
the guidance of a domain expert: air temperature, pres-
sure, relative humidity, and precipitable water, available at
monthly intervals for a period of 60 years from 1948 to 2007
(720 points).

Temperature and pressure were chosen because they are two
key variables in terms of significance, for example in defin-
ing climate regions [14] or in determining indices that may
act as predictors [18; 19; 23]. Precipitation is another vari-
able of great importance, but it is known to be inaccurate
in reanalysis products due to its inherently large space-time
variability [9]. Therefore, we use relative humidity and pre-
cipitable water as surrogates because these variables are rel-
atively more stable and reliable in the reanalysis data [10].

Measurements are provided for points (grid cells) at a reso-
lution of 2.5◦ × 2.5◦ on a latitude-longitude spherical grid.
Figure 1 shows a sample time series for each variable at the
grid point closest to Paris, France (47.5◦N 2.5◦E).

3. THE NETWORK VIEW
In this section, we describe the major components of our
methodology: using cross correlation to define a measure
of similarity between locations, constructing the weighted
climate network, identifying communities of interest, and
studying their behavior over time.

Figure 2 provides an overview of our approach; algorithm
details, including pseudocode, are provided in Section 3.5.

3.1 A Similarity Measure for Climate Data
Based on Cross Correlation

Various methods have been used for clustering climate data,
and underlying each approach is some type of measure that
defines the distance or, conversely, the similarity between
two points. Traditional measures such as Euclidean [7] and

Mahalanobis [5] distance have been employed in climate ap-
plications. But these may not be the most appropriate for
high-dimensional and noisy data, or when clusters of varying
density are known to exist within the data. To counter these
problems, [4] proposes to define similarity locally based on
the number of nearest neighbors two points share, which
was demonstrated to provide good results with univariate
climate data.
In the present application, each data point represents a phys-
ical location (grid cell) for which we have four separate time
series corresponding to the four climate variables, and none
of the aforementioned distance measures can take full ad-
vantage of the information contained therein. Therefore, we
propose to define a new feature space based on the correla-
tions between the four time series at each point, and simi-
larity between locations is then measured as distance within
this space.
Let AT , PR, RH, and PW denote the time series for air
temperature, pressure, relative humidity, and precipitable
water, respectively, and let t denote the number of data
points in each series. Then, for any two series A and B the
cross correlation function CCF at delay d is computed as

CCF (A,B, d) =

t
X
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[(ai − ā)(bi−d − b̄)]
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where ai is the ith value in series A and ā is the mean of
all values in the series. Note that the correlation coefficient
ranges from -1 to 1, where 1 indicates perfect agreement and
-1 perfect disagreement, while 0 indicates that no correla-
tion is present at all. Since an inverse relationship is equally
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Figure 2: Step-by-step overview of our workflow.

relevant in this application, we take the absolute value of the
cross correlation function. In addition, cognizant that some
climate phenomena may occur with some lag (i.e., at differ-
ent times in different places), we account for this possibility
by computing the cross correlation function for delays in the
range −6 < d < +6 months and take the largest (absolute)
value to be the correlation between A and B.

Given the above definition, we now compute the correla-
tion between all pairs of variables (time series) at each lo-
cation, in this case

`

4
2

´

= 6 pairs. This results in a new
6-dimensional feature space wherein each grid cell is repre-
sented as a point defined by the correlations between climate
variables at the corresponding location, as follows:

R
6 = 〈CCF (AT,PR), CCF (AT,RH), CCF (AT, PW ),

CCF (PR,RH), CCF (PR, PW ), CCF (RH,PW )〉
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Figure 3: Distribution of edge weights in the cross
correlation-based network for the period 1948-1952.

Our measure for similarity between two grid cells is then
defined as the Euclidean distance in this new R

6 space, so
that the interaction between variables at each location – as
opposed to the behavior of a single variable – defines the
strength of the relationship between locations.

3.2 From Similarity to Networks
Having defined a similarity measure that maps our four time
series corresponding to the four climate variables into Eu-
clidean space, we could apply k-means or a similar clustering
method to cluster grid cells into potential climate regions.
However, this approach would neither solve the problem of
data representation nor would it address the issues men-
tioned earlier, namely, that the data is noisy, contains clus-
ters of varying densities, and may change with time.

Instead, we propose to construct networks from the climate
data by dividing the time series into 5-year windows, so that
twelve separate networks are available to study changes in
structure over time. The network for each window is then
constructed as follows. Let each grid cell be a node in the
network. For each pair of nodes create an edge and assign it
a weight equal to the correlation-based similarity described
in section 3.1. This will result in a fully connected network
(i.e., one giant clique) consisting of over ten thousand nodes
and more than 55 million edges. The concept of a commu-
nity is naturally absent here, so the next step is to prune
away many of the edges in order for structure to emerge.

Of course we want to eliminate edges in a principled manner,
and the edge weights allow us to do just that. As illustrated
in Figure 3, the histogram of edge weights in the complete
network (1948-1952 shown) follows a unimodal distribution
– the exact shape is irrelevant here. What is important is
the presence of only a few edges with very high weight (in
the right tail), and it is precisely those strongest edges that
define the fundamental structure of the network. Therefore,
we prune away 99% of the edges, retaining only the top
1 percentile by weight (this may seem extreme, but it still
leaves over a half million edges intact).

After performing this procedure in each window, we obtain
twelve climate networks for analysis. In the next section,
we briefly describe the community detection process and
demonstrate why correlation-based similarity is necessary
to identify interesting clusters.



3.3 Community Detection in Climate Networks
Given a set of networks constructed from the climate data
as described above, we can now use community detection
to identify regions of interest. A variety of algorithms with
different characteristics have been proposed and applied in
a number of settings including social networks [15], protein
interaction networks [1], and food webs [2]. Two criteria
drove our selection of an appropriate algorithm: (i) due to
the relatively high network density it must be computation-
ally efficient, and (ii) it must have the ability to consider
weighted networks. Based on these requirements we chose
an algorithm called WalkTrap, which is grounded in the in-
tuition that random walks in a network are more likely to
remain within the same community than to cross community
boundaries; for algorithm details see [16]. To our knowledge,
this is the first time community detection has been used on
networks constructed from spatio-temporal data.

We applied the WalkTrap algorithm to each of the twelve
networks using the default parameter of walk length t = 4.
A sample visualization of the communities ≥ 20 nodes for
the first period is shown in Figure 4(a). Note that they
vary widely in both shape and size, and many of them are
spatially disjoint. To illustrate the implications of different
edge weightings we also constructed a network from air tem-
perature alone, where similarity is defined as the maximum
cross correlation (±6 months) between the time series for
two locations. Figure 4(b) depicts communities ≥ 20 nodes
in this network. While these may be more pleasing to the eye
(primarily due to their spatial cohesion), they are also less
interesting because they merely show areas where temper-
atures are similar. In fact, more elementary measures such
as annual means, ranges, or the presence/absence of seasons
should be sufficient to identify these kinds of patterns. This
result is nonetheless encouraging as it demonstrates that the
network representation is capable of discerning simple pat-
terns such as univariate climate regions, but our ultimate
goal is to discover more complex patterns.

3.4 Tracking Communities over Time
Since we are interested in the behavior of communities over
time, our last task is to extract only those which can be
tracked through several consecutive windows. Community
tracking in dynamic networks can itself be a challenging
problem [8], but in this application the following method
proved sufficient. For each community Ct,i labeled i at time
step s, maximize the quantity

arg max
j

|Cs,i ∩ Cs+1,j | (2)

s.t.

|Cs,i ∩ Cs+1,j |

Cs,i
> 0.5 and

|Cs,i ∩ Cs+1,j |

Cs+1,j
> 0.5

In other words, find the corresponding community labeled
j at time s + 1 with which it shares the most nodes. If less
than 50% of the nodes in the community change between
time steps, then the community is said to persist and we
can reasonably assume that there is continuity; otherwise
we consider there to be insufficient evidence for tracking and
the community is discarded. This process is repeated for all
time steps s = 1, 2, ..., 11 until all “trackable” communities
have been identified.

3.5 Summary of Methods and Complexity
Analysis

The pseudocode for our methodology is shown in Algorithm 1,
divided into its three major stages: computation of cross
correlation-based similarities between locations (lines 1-14),
systematic pruning of edges (15-23), and community detec-
tion and tracking over multiple time periods (24-35). The
procedure takes as input a spatio-temporal climate dataset
and produces as output the progression of all communities
deemed trackable.

It is apparent from the pseudocode that the computational
complexity of the algorithm is quite high. For the first
stage, the dominant operation is the nested loop beginning
on line 4. Using a simplified notation where n = lat × lon
is the total number of grid cells, this loop has a complexity
of O(n2v2t), so that the processing requirements increase
quadratically with the number of points as well as the num-
ber of variables. Given that the complete network contains

Algorithm 1 Community Detection in a Climate Network.

Input: A dataset D of lat × lon locations, divided into k
time series of length t for each climate variable in V
(elements of D are accessed with subscripts D[x, y, v]).

1: {Compute Cross Correlation-Based Similarities}
2: for each time period s = 1...k do

3: initialize graph Gs = { }
4: for each location p in (x1 = 1...lon, y1 = 1...lat) do

5: for each location q in (x2 = 1...lon, y2 = 1...lat) do

6: for each v1 ∈ V do

7: for each v2 ∈ V \v1 do

8: R
6
v1,v2

= argmax
−6≤d≤6

CCF (Ds[x1, y1, v1],

Ds[x2, y2, v2], d)
9: end for

10: end for

11: calculate edge weight w = dist(p, q, R6)
12: add edge e(p, q, w) to Gs

13: end for

14: end for

15: {Network Pruning}
16: sort edges of Gs by weight
17: set pruning threshold wmin at 99th percentile
18: for each edge e(p, q, w) ∈ Gs do

19: if w < wmin then

20: remove e(p, q, w) from Gs

21: end if

22: end for

23: end for

24: {Community Detection and Tracking}
25: for each time period s = 1...k do

26: Cs = WalkTrap(Gs)
27: end for

28: for each time period s = 1...(k − 1) do

29: for each community i ∈ Cs do

30: overlap = argmax
j

|Cs,i ∩ Cs+1,j |

31: end for

32: if (overlap/|Cs,i| > 0.5) and (overlap/|Cs+1,j | > 0.5)
then

33: output Cs,i, Cs + 1, j, overlap
34: end if

35: end for



(a) Network weighted with cross correlation-
based similarity for the period 1948-1952

(b) Network weighted with correlation of air
temperature only for the period 1948-1952

Figure 4: Comparison of community structure for different weighting methods (best viewed in color).

O(n2) edges that need to be sorted, the second stage will
be O(n2log n). The third stage of the procedure is bounded
by the WalkTrap algorithm, also O(n2log n) [16]. There-
fore, the overall complexity of the end-to-end community
detection procedure is O(n2v2t) + O(n2log n).

Note that in practice, a vast majority of the total execution
time is spent in the first stage. In fact, the first stage took
approximately 1,200 CPU hours (24 hours on 50 machines)
to complete, whereas the second and third stages combined
only required 2 CPU hours (on a single machine).

4. EXPERIMENTAL RESULTS
Here we present several examples of communities identified
using the methodology described in Section 3, along with
further analysis and potential interpretations based on un-
derlying climate phenomena. For space reasons we limit
ourselves to the four communities shown in Figure 6, each
covering five consecutive windows (25 years). But before we
delve deeper into the discussion, let us first define a measure
of density that enables us to determine the relative strength
of individual communities at different time steps.

4.1 Evaluation Measure: Community Density
The structural properties of clusters, or communities, are
an important tool to better characterize them and detect
changes over time. One property that is frequently consid-
ered is cluster density, and many algorithms implicitly (or
even explicitly) measure density as part of the clustering
process. Community detection is different in that the den-
sity of an individual cluster cannot be measured directly.
Therefore, we define an alternate measure to estimate den-
sity of communities based on the distribution of edges in-
stead.
Let n and e be the total number of nodes and edges in the
network, respectively; similarly, let ni denote the number of
nodes in community Ci and ei the number of edges between
nodes in this community. The density of community Ci is
then defined as the ratio of the number of within-community
edges to the expected number of edges based on density of
the network as a whole,

Density(Ci) =
ei

e
n(n−1)/2

× ni(ni − 1)/2
(3)

We validated this method by comparing the density distri-
bution of 30 “true” communities (identified in our network)
with random communities as well as “anti-communities”,
chosen from different true communities in a round-robin
fashion. As shown in Figure 5, the anti-communities have a
density less than 1 and the random communities have a den-
sity between 1 and 2, while the density of the true commu-
nities ranges from 8 to 152. It is generally true that higher
density is an indication of more interesting communities, but
a domain expert should assist in making this determination.

4.2 Community 1: South America, Africa,
and South-East Asia

The first community, shown in Figure 6(a), spans the years
1963-1987 and is relatively small, ranging from approxi-
mately 25 to 50 nodes. Nonetheless, it consistently covers
spatially stable regions on three different continents and is
one of the most dense communities overall.
In terms of physical interpretation, the areas included in
community 1 belong either to the equatorial winter dry (South
America, Africa) or monsoonal (South-East Asia) climate
zones. Given the subset of variables we considered here, it
is likely that the strong inverse relationship (negative corre-
lation) between the hydrological patterns in the two regions
– extremely dry conditions versus intense rainfall/monsoons
during the summer months – are at least partially responsi-
ble for the emergence of this community.
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Figure 5: Density of different types of communities.



(a) Community 1: South America, Africa, South-East Asia. Density: 78.94 (1963), 44.02 (1968), 41.16 (1973), 86.24 (1978), 58.81 (1983)

(b) Community 2: South America, Africa, India, Australia. Density: 89.84 (1948), 70.38 (1953), 45.30 (1958), 8.85 (1963), 48.90 (1968)

(c) Community 3: Southern Ocean, Canada, Europe. Density: 5.68 (1983), 9.68 (1988), 16.21 (1993), 13.31 (1997), 17.31 (2003)

(d) Community 4: Antarctica, Western US, Greenland, Central Asia. Density: 31.34 (1963), 52.70 (1968), 43.17 (1973), 41.37 (1978), 75.00 (1983)

Figure 6: Four communities extracted from climate networks, each tracked over five consecutive windows (best viewed in color). Density is given as the ratio of
within-community edges actually present relative to the expected number of edges based on the entire network.



4.3 Community 2: South America, Africa,
India, and Australia

The second community in Figure 6(b) spans the years 1948-
1972 and, with the exception of the fourth window (1963),
consists of approximately 150 to 220 nodes. Much like the
first community, it is composed (primarily) of equatorial
winter dry and (relatively fewer) monsoon regions, specifi-
cally in Northern India. What makes this community inter-
esting is that significant change in structure occurs in 1963,
which is visually detectable but also manifests itself as a de-
crease in density. A closer look at the network reveals that
the community merged with a larger community containing
a number of desert locations, only to separate again in the
following period. Since tropical climate differs from deserts
mainly in precipitation, we postulate that the monsoon sea-
sons during this time were unusually weak, thereby becom-
ing more similar and causing the two to temporarily merge.
Indeed, there is some indication that the monsoon pattern
altered slightly during the 1960s [3; 6]. We cannot attribute
the change in structure to this climate phenomenon with
certainty, but [20] also linked changes in network structure
to climate shifts.

4.4 Community 3: Southern Ocean, Canada,
and Europe

The third and most recent community, depicted in Fig-
ure 6(c), spans the years 1983-2007. It is dominated by
temperate and humid climate but also contains some drier
mediterranean regions, and decreases from approximately
2,200 down to 800 nodes. Once again, the decreasing size
is accompanied with a slight increase in density. Given that
a majority of the locations in the first time step lie the
Southern Ocean, it is possible that the reduction in net-
work size is the result of warming trends observed in these
areas. However, a strong relationship remains between the
Weddell Sea and much of the European continent as well
as parts of North America, prompting the question whether
this ocean region might be a source for a climate index and
exhibit some predictive capabilities.

4.5 Community 4: Antarctica, Western US,
Greenland, and Central Asia

This last community, shown in Figure 6(d), also spans the
years 1963-1987. It is quite dense, indicating a strong rela-
tionship between the locations, but the underlying mecha-
nism is non-obvious in this case. A large number of areas
are either polar tundra (Greenland, Antarctica) or located
in mountain ranges (Rocky Mountains, Andes, Himalayas),
but there are also locations in South America, Central Asia,
and Australia that defy both of these categorizations. It
is possible that the strong relationship arises from an in-
verse relationship between temperature and precipitation,
but that statement is purely speculative at this point. What
we know is that teleconnections do exist and, ultimately,
such unexplained patterns can help guide the development
of new analysis methods.

5. DISCUSSION & FUTURE WORK
Here we place this exploratory study in the broader context
of climate science. We expand upon known issues relating
to data and methodology, point out current capabilities and
limitations, and discuss potential extensions.

5.1 Data and Variable Selection
The present work examines gridded reanalysis data, the best
estimate of a global historical climate record. However, it
is worth noting several factors to keep in mind when using
this type of data. For one, reanalysis data is composed from
multiple heterogeneous sources including satellite, remotely
sensed, and in-situ measurements. These raw inputs are
combined by fitting a model to the data, which inherently
results in some smoothing. In addition, values are interpo-
lated to a regular grid, further reducing variability as well
as precision. This was not a concern here as cross correla-
tion measures relatively long-term trends, but it could have
serious implications if we were comparing other indicators
such as climate extremes, for example.
Likewise, the selection of variables may significantly affect
community structure and needs to be considered when in-
terpreting the results. As discussed in Section 2, we chose
four variables that are strongly indicative of certain climate
phenomena, and we intentionally avoided variables that are
known to be problematic (e.g., precipitation) In the future,
we plan to investigate the variable selection problem more
thoroughly and answer such questions as, How does the com-
munity structure change by adding/removing a variable?
Can these changes be explained by the presence/absence
of that variable? And how to select an optimal subset of
variables for a given task?

Lastly, we note that reanalysis products are not the only
type of climate data. In some cases actual observations
(e.g., thermometer, rain gauge) or at least higher-resolution
gridded datasets are available for smaller geographic regions.
Climate models represent another viable source of data, and
comparing observations with model hindcasts may be one
valuable exercise as differences between the two may pro-
vide some insights into the model bias.

5.2 Similarity Measures
The cross correlation-based similarity between locations pro-
posed here is a rather complex measure, especially in terms
of interpreting and relating communities back to the data.
In fact, when faced with the problem of clustering climate
data there are a host of other measures one might consider
first, including averages and ranges, anomalies from long-
term means, presence of seasonality, or (auto)correlation in
space and time. But much prior work has been done us-
ing these measures, especially for univariate data, and the
results are well understood. Instead, we went beyond these
conventional boundaries to explore an innovative, multivari-
ate measure of correlation. In the future, we intend to in-
vestigate other similarity measures in this context. For in-
stance, non-linear relationships are known to exist between
climate variables [13], but most correlation measures assume
linear dependence. Using the framework presented here, we
can substitute a non-linear measure [12] and potentially find
very different communities. We envision that a combination
of simple (mean, seasonality) and more complex (cross cor-
relation, non-linear dependence) measures could eventually
be used to discover a variety of patterns in climate data.

5.3 Networks and Community Detection
We want to impress upon the reader once again the specific
benefits of our network methodology over traditional clus-
tering approaches such as k-means. First, k-means is known
to perform poorly on noisy and high-dimensional data [4].



However, even if the correlation-based similarity were used
as a distance measure, k-means would be unable to find
certain communities. For example, it may not capture tran-
sitive relationships like “if A is similar to B and B is similar
to C, then A is also similar to C” in the same way a network
can, and community detection algorithms leverage this in-
formation to find more meaningful climate regions. While
this paper presents but a few examples, we will further ex-
plore the parameter space, different clustering algorithms
(e.g., k-means, spectral), varying window sizes and a more
extensive evaluation of robustness to changes [11].

5.4 Computational Considerations
As discussed in Section 3.5, calculating all-pairs similarity
is an expensive operation: computing cross correlation for
10,000 grid cells with twelve 5-year windows of four vari-
ables took 1,200 CPU hours. However, each of these dimen-
sions could conceivably grow and drastically increase prob-
lem size. There has been a consistent trend towards higher
resolution, both for reanalysis data and climate model out-
puts. The present study used a 2.5◦×2.5◦ grid, but spacings
of 1◦ or less are quickly becoming the norm. Second, reanal-
ysis and model data contain dozens of variables. For this
study we relied on a domain expert to select a subset, but
using additional variables or, worse yet, exploring a large
subspace of them may not be feasible. Finally, it should
also be noted that model outputs, and to some extent even
observations, are available for much longer time periods.
Given that the complexity of our method is O(n2v2t) +
O(n2log n), even relatively small changes in dataset size
will have noticeable consequences. For example, if the grid
spacing decreases by a factor of two, there will be four times
as many cells, which in turn means computational require-
ments will grow by a factor of 16. Therefore, all the afore-
mentioned issues must be considired when designing exper-
iments, lest the execution time becomes intractable.
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