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Abstract: The analysis of climate data has relied heavily on hypothesis-driven statistical methods, while projections of future
climate are based primarily on physics-based computational models. However, in recent years a wealth of new datasets has
become available. Therefore, we take a more data-centric approach and propose a unified framework for studying climate, with
an aim toward characterizing observed phenomena as well as discovering new knowledge in climate science. Specifically, we
posit that complex networks are well suited for both descriptive analysis and predictive modeling tasks. We show that the
structural properties of ‘climate networks’ have useful interpretation within the domain. Further, we extract clusters from these
networks and demonstrate their predictive power as climate indices. Our experimental results establish that the network clusters
are statistically significantly better predictors than clusters derived using a more traditional clustering approach. Using complex
networks as data representation thus enables the unique opportunity for descriptive and predictive modeling to inform each
other.  2010 Wiley Periodicals, Inc. Statistical Analysis and Data Mining, 2010
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1. INTRODUCTION

Identifying and analyzing patterns in global climate
is an important task, because it helps climate scientists
develop a deeper understanding of the complex processes
underlying observed phenomena. For much of our planet’s
past only rudimentary climate records are available, and
efforts to study them have relied heavily on—and driven
the development of—statistical methods [1] and physics-
based computational models (e.g., Ref. 2), which use first
principles to combine various earth system components
and project future climate. However, advances in modern
technology (like satellites in the 1950s) have greatly
increased our ability to monitor climate and rapidly provide
massive amounts of data, presenting us with an opportunity
to induce transformative changes in the way we analyze and
understand the earth’s climate system. These data exhibit
a number of traits that have the potential to not only
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complement hypothesis-driven research but also enable the
discovery of new hypotheses or phenomena from the rich
data. Specifically, these traits include: (i) greater spatial
coverage and higher resolution; (ii) extended temporal
span; (iii) observational records; (iv) reanalysis data, which
is a hybrid of observed and model-simulated data (see
Section 2); (v) multiple vetted data sources; and (vi) a
vibrant research community.

Data of such extent and longitudinal character brings
novel challenges for data-driven science for charting the
path from data to knowledge to insight. The process of
data-guided knowledge discovery will entail an integration
of descriptive analysis and predictive modeling for ‘useful
insights’ (hypotheses) from the data, which can then
be validated against observed phenomena. This unified
framework prompts ‘networked’ thinking: imagine the
globe as a spatiotemporal grid. Each cell, corresponding
to a region, can be represented by a node, and different
nodes are connected to each other not by spatial proximity,
but rather on the basis of similarity shared in climatic

 2010 Wiley Periodicals, Inc.



2 Statistical Analysis and Data Mining, Vol. (In press)

variability. Such interactions among nodes can be exploited
to discover how regions are related and impact each other.

To this end, we make the case that complex networks
offer a compelling perspective for capturing the dynamics
in climate data not only for descriptive analysis but also
predictive modeling. The concept of climate networks was
first proposed by Tsonis and Roebber [3], but their use
has been limited to describing physical properties of the
climate system and comparing them to known phenomena.
There also exists prior work that applies data mining
techniques in climate, specifically to discover ocean climate
indices from historical data via clustering and correlating
the clusters with climate on land [4]; this approach is
extended by Lin et al. [5] by employing the same clustering
algorithm but building association rules between ocean
and land regions. However, these approaches are limited
in that they only consider a single climate variable. In
contrast, we take the broader view by comparing networks
constructed from several climate variables separately and
capture their interactions in a multivariate predictive model,
paving the path from data to knowledge to insight. We
should note here that the multivariate nature of the data
can be considered at several points in the process, that is,
during network construction, clustering, or prediction. Here
we combine the data during the predictive modeling stage
as the construction of multivariate networks directly as well
as the coclustering of multiple networks are themselves
separate areas of active research (see, e.g., Ref. 6).

Contributions: We focus on the challenges of regional
predictions and precipitation; as highlighted in a recent
article [7], regional predictions and precipitation remain
among the four ‘real holes in climate science’. We
investigate whether relatively hypothesis-free, data-guided
knowledge discovery has the ability to advance the state
of climate science in these areas and complement the
predictive power of physics-based models. To this end,
we present an innovative approach that encompasses
both descriptive analysis and predictive modeling. In
particular, we posit that using complex networks as
data representation provides a unified framework for
identifying and characterizing patterns in the data as well as
developing predictive insights, while enabling the analysis
and modeling tasks to inform each other in unprecedented
ways. The results and analysis presented here are distinct
from prior work in that we construct networks from multiple
climate models and compare/contrast their properties, we
use community detection to identify homogeneous climate
regions, and we learn multivariate predictive models.
The technical and methodological contributions can be
summarized as follows:

• Complex networks from a wide range of climate
variables (Sections 2 and 3).

• Analysis of the properties of networks to gain insights
in the climate domain (Section 4).

• Derivation of multivariate ocean climate indices from
network clusters and show that they are statistically
significantly better predictors of land climate than
clusters obtained with a traditional clustering method
(Section 5).

• Offer compelling perspective on complex networks
as unifying framework and the unique opportunity for
descriptive analysis and predictive modeling tasks to
inform each other (Section 6).

2. CLIMATE DATA

In the following, we describe the characteristics of the
dataset used in this study as well as the preprocessing steps
required for our analysis.

2.1. Dataset Description

The data stems from the NCEP/NCAR Reanalysis
Project [8] (available at Ref [9]). This reanalysis dataset
is created by assimilating remote and in situ sensor
measurements covering the entire globe and is widely
recognized as one of the best surrogates for global
observations (it is obviously impossible to obtain exact
measurements). We did not want to constrain ourselves by
an arbitrary a priori selection of variables, so we consider a
wide range of surface and atmospheric climate descriptors.
Specifically, we include these seven variables (abbreviation,
brief definition in parentheses): sea surface temperature
(SST, water temperature at the surface), sea level pressure
(SLP, air pressure at sea level), geopotential height (GH,
elevation of the 500 mbar pressure level above the surface),
precipitable water (PW, vertically integrated water content
over the entire atmospheric column), relative humidity (RH,
saturation of humidity above the surface), horizontal wind
speed (HWS, measured in the plane near the surface), and
vertical wind speed (VWS, measured in the atmospheric
column). This is the first time such a wide range of climate
variables is used in a climate networks study.

These variables are available as monthly averages over
a period of 60 years (1948–2007), for a total of 720 data
points. The data is spatially arranged as points (grid cells)
and we consider a 5◦ × 5◦ latitude–longitude spherical grid.
A schematic diagram of the data for a single timestep ti
depicted in the rectangular plane is shown in Fig. 1. For the
purpose of this study, we only use the data over the oceans
as we are ultimately interested in finding relationships
between ocean indicators and land climate (see Section 5).
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Fig. 1 Schematic depiction of gridded data for a single timestep
ti in the rectangular plane

2.2. Countering Seasonality and Autocorrelation

The spatiotemporal nature of climate data poses a num-
ber of unique challenges. For instance, the data may be
noisy and contain recurrence patterns of varying phase and
regularity. Seasonality, in particular, tends to dominate the
climate signal especially in mid-latitude regions, resulting
in strong temporal autocorrelation (Fig. 2(a)). This can be
problematic for prediction, and indeed climate indices [10]
are generally defined by the anomaly series, that is, depar-
ture from the ‘usual’ behavior rather than the actual values.

Therefore, we follow the precedent of related work and
compute anomaly values [11–13]. Specifically, we remove
the seasonal component by monthly z-score transformation
and detrending as described in Ref. 4. At each grid
point, we calculate for each month m = {1, . . . , 12} (i.e.,
separately for all Januaries, Februaries, etc.) the mean

µm = 1

Y

2007∑
y=1948

am,y, (1)

and standard deviation

σm =
√√√√ 1

Y − 1

2007∑
y=1948

(am,y − µm)2, (2)

where y is the year, Y the total number of years in the
dataset, and am,y the value of series A at month = m,
year = y. Each data point is then transformed (a∗) by
subtracting the mean and dividing by the standard deviation
of the corresponding month,

a∗
m,y = am,y − µm

σm

. (3)

The result of this process is illustrated in Fig. 2(b), which
shows that deseasonalized values have significantly lower
autocorrelation than the raw data. In addition, we detrend
the data by fitting a linear regression model and retaining
only the residuals. For the remainder of this article, all
data used for experiments or discussed hereafter have been
deseasonalized and detrended as described above.

3. CLIMATE NETWORKS

The global climate system can be represented by a
network of interacting regions, connected by relationships
derived from their climatic variability. The intuition
behind this methodology is that the dynamical behavior
of the system can be captured in the local and global
topology of a complex network. Nodes of such a network
correspond to spatial grid points of the underlying dataset,
and weighted edges are created based on the statistical
relationship between the corresponding pairs of (anomaly)
time series [3,11,12,14]. In this section, we describe the
network construction process in more detail.

3.1. Estimating Link Strength

Quantifying the relationship between a pair of nodes is
critical to the network approach. Given that the data is
normalized as described in Eqs. 1–3, we need not consider

(a) (b)

Fig. 2 The deseasonalized data (b) exhibits significantly lower autocorrelation due to seasonality than the raw data (a)
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the mean behavior, only deviations from it. Therefore, the
Pearson correlation coefficient is a logical choice as a
measure of link strength [3]. For two series A and B of
length t the correlation r is computed as

r(A, B) =
∑t

i=1(ai − a)(bi − b)√√√√∑t
i=1(ai − a)2

t∑
i=1

(bi − b)2

, (4)

where ai is the ith value in A and a is the mean of all
values in the series. Note that the correlation coefficient has
a range of (−1, 1), where 1 denotes perfect agreement and
−1 perfect disagreement, with values near 0 indicating no
correlation. Since an inverse relationship is equally relevant
in the present application, we set the edge weight to |r|, the
absolute value of the correlation coefficient.

We should note a couple of caveats here: (i) given that
the networks span the entire globe, temporal lags may affect
the correlation strength over long distances. However, we
ignore lags in our analysis as the use of monthly data should
mitigate their influence to some degree, though future
work could investigate the possibility of lags and their
effect on network structure. Second, nonlinear relationships
are known to exist within climate, which might suggest
the use of a nonlinear correlation measure. However,
Donges et al. [15] examined precisely this question in the
context of network construction for climate and concluded
that, ‘the observed similarity of Pearson correlation and
mutual information networks can be considered statistically
significant’. Therefore, it is sensible to use the simplest
possible correlation measure, namely the (linear) Pearson
coefficient.

3.2. Threshold Selection and Pruning

Computing the correlation for all possible pairs of
nodes results in a fully connected network but many
(in fact most) edges have a very low weight, so that
network pruning is desirable. And since it is impossible
to determine an optimal threshold [16], we must rely
on some other selection criterion. For example, Tsonis
and Roebber [3] opt for a threshold of r ≥ 0.5 while
Donges et al. [15] use a fixed edge density ρ to compare
different networks, noting that ‘the problem of selecting
the exactly right threshold is not as severe as might be
thought’. However, we believe that a statistical approach is
very principled and most appropriate here. Specifically we
use the p-values of the correlation coefficients, computed
using a two-sided t-test with confidence intervals based
on the Fisher transformation, to determine statistical
significance. Two nodes are considered connected only if
the p-value of the corresponding correlation r is less than

1 × 10−10, imposing a very high level of confidence in that
relationship. This may seem like a stringent requirement
but, as shown in Section 4, quite a large number of edges
satisfy this criterion and are retained in the final network.
The result of these construction and pruning procedures is a
(weighted) simple graph, that is, one which does not contain
self-loops or multiple edges between any pair of vertices.

4. DESCRIPTIVE ANALYSIS

Using the weighting and pruning methods described in
Section 3, we construct a separate network for each of
the seven climate variables. In this section, we present
several examples of descriptive analysis enabled by climate
networks. The results combine quantitative evaluation with
qualitative interpretation within the climate domain.

4.1. Network Topology and Clustering

First, we compute several structural properties of each
network, which provide clues about the dynamics of the
climate system:

• Number of nodes and edges.

• Clustering coefficient (C)—indicative of the
‘cliquishness’, this measure is the mean of all clus-
tering coefficients Ci in the network, computed for
each node i as

Ci = 2|ejk|
ki(ki − 1)

, (5)

where ejk is the set of all edges between first
neighbors of i and ki is the degree of i (the number
of edges connecting to node i).

• Characteristic path length (L)—expected distance
between two randomly selected nodes in the network,
computed by taking the mean over the all-pairs
shortest paths computed with the algorithm described
in Ref. 17.

• Also included are the expected clustering coefficient
and characteristic path length of a random graph with
the same number of nodes and edges, estimated as

Crand ≈ 〈k〉/N, (6)

and

Lrand ≈ ln(N)/ln(〈k〉), (7)
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Table 1. Summary of network properties: number of
nodes/edges, average clustering coefficient (C), characteris-
tic path length (L), and expected values of C and L for random
networks with the same number of nodes and edges.

Variable Nodes Edges C L Crand Lrand

SST 1701 132 469 0.541 2.437 0.092 1.474
SLP 1701 175 786 0.629 2.547 0.122 1.395
GH 1701 249 322 0.673 2.436 0.172 1.310
PW 1701 50 835 0.582 4.281 0.035 1.819
RH 1700 25 375 0.559 4.063 0.018 2.190

HWS 1699 31 615 0.554 4.826 0.022 2.056
VWS 1701 71 458 0.342 2.306 0.049 1.679

respectively, where 〈k〉 is the average degree, and N

is the number of nodes in the network [18].

These properties are summarized in Table 1. Note that
the slight variation in the number of nodes is due to the fact
that in two cases a small number of nodes have no edges
connecting to them after the pruning process and hence are
removed from the network.

Second, we perform clustering to extract spatial patterns
from the data. The goal here is to identify homogeneous
regions, as defined by similarity in the long-term climate
variability; note that spatial proximity is not taken into
consideration. Such regions, or clusters, are of interest
both to reveal inherent structure within the climate
system (for example evidence of spatial autocorrelation
or teleconnections) as well as to use as potential climate
indicators (see Section 5).

Several methods have been used for clustering climate
data, for instance k-means [19] and a shared-nearest
neighbor approach [4]. However, we note that this task
can be accommodated directly within our framework. In
network literature, the clustering process is also called
community detection due to its origins in social network
analysis [20], and a number of algorithms have been
applied in various settings; examples include the discovery
of functional modules in protein–protein interactions [21],
characterization of transportation networks [22], and many
more [23,24]; for an extensive survey of methods and
selected applications, see Ref. 25. To our knowledge, we
were the first to publish on the application of community
detection to climate networks and analysis of the resulting
structure [14], and we are only aware of one other very
recently accepted work in this area [26].

Since it considers ‘network distance’, in contrast to the
pair-wise distances used by traditional approaches, it should
be suitable for partitioning such a spatiotemporal dynamical
system. In choosing an appropriate algorithm for this study,
three requirements guided our selection: (i) the ability to
utilize edge weights, (ii) suitability for dense networks,
and (iii) overall computational efficiency. The former two

constraints are motivated by the physical properties of the
networks themselves, namely, the inherent presence of a
large number of edges with varying connection strengths.
The first requirement, in particular, eliminates a large
number of algorithms from consideration as they only work
with unweighted networks. Thus, the results presented here
were obtained with the Walktrap algorithm described in
Ref. 27, which meets all the above criteria. Specifically, the
algorithm is based on the intuition that a random walker
will get trapped in a dense part of the network (cluster).
The authors define a node distance metric based on a large
number of short random walks, which is used to discern
the overall cluster structure. We used the default parameter
settings: walk lengths of t = 4 steps and global maximum
modularity to determine the best partition. The resulting
clusters are visualized in Fig. 3. Another benefit of this
algorithm is its ability to determine the number of clusters
from the data, which varies from 4 to 18 across the different
variables.

4.2. Domain Interpretation of Climate Networks

In the following, we examine the network properties
more closely and interpret them in the context of domain
knowledge. We should note here that nodes with no remain-
ing edges after pruning are removed from the network,
which explains the minor variations for relative humidity
and wind speed; but in general the number of nodes is
fixed (Table 1). In contrast, the number of edges varies
widely, ranging by nearly one order of magnitude. The
fact that the two hydrological variables (precipitable water,
relative humidity) and wind components have a smaller
number of edges can be attributed to these generally being
related to more localized activity, whereas temperature
and pressure—especially over the oceans—participate in
larger-scale phenomena. We see additional evidence of this
interpretation reflected in the geographic properties of the
networks in Section 4.3.

Moving to the clustering coefficient we find that, despite
varying numbers of edges, most networks exhibit a high
degree of clustering; vertical wind speed is the exception.
Since we do not impose any spatial constraints on the
networks, there is no guarantee that clusters will be
geographically cohesive, but as shown in Fig. 3 this is
often the case. In fact, we observe a relationship between
clustering coefficient and the clusters we discovered,
namely, the higher the value of C, the fewer clusters exist in
the network and the more geographically coherent they are.
Thus, while geopotential height with C = 0.673 only has
four very uniform clusters, vertical wind speed with C =
0.342 has 15 clusters, many of which are spatially disjoint.

A closer look reveals that the clusters reflect many
known relationships among climate variables, but also a
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(a)

(d) (e)

(f) (g)

(b) (c)

Fig. 3 Clusters obtained by applying community detection to climate networks (number of clusters in parentheses), numbers identify
individual clusters (arbitrary assignment); best viewed in color. (a) Sea surface temperature (10); (b) sea level pressure (5); (c) geopotential
height (4); (d) precipitable water (10); (e) relative humidity (16); (f) horizontal wind speed (18); (g) vertical wind speed (15)

few that are not as obvious and hence may be of interest
to climate scientists. For example, cluster 5 in panel (a)
of Fig. 3 seems to capture a well-known teleconnection
between the El Niño Southern Oscillation and the Indian
Ocean [28,29]. Moreover, panels (a), (d)–(f) of Fig. 3
all look remarkably similar. The close correspondence
between sea surface temperature and precipitable water is
explained by the Clausius–Clapeyron relation [30], which
describes the increased water-holding capacity of air with
increasing temperature. Relative humidity in turn is a
function of temperature and atmospheric water content,
explaining its relationship with both sea surface temperature
and precipitable water. Lastly, the connection of wind
speed with this group is not apparent, but a search
of domain literature revealed that there is in fact a
known relationship between surface winds and sea surface
temperature [31]. Geopotential height depends on sea level
pressure, which explains the similarity in their clusters. We
also observe distinctive latitudinal bands, likely a result
of the interplay between the wind belts that make up
the global atmospheric circulation and these two pressure-
related variables. Interestingly, it was shown in Ref. [3] that
the tropics and extratropics consist of two separate networks
with fundamentally different properties, which validates the
presence of distinct communities in these regions. Finally,
vertical wind speed looks unlike any other variable as
it does not form geographically cohesive clusters. But

this behavior is not surprising due to its involvement in
convection, a highly localized activity that remains one of
the most difficult atmospheric processes to model [32].

Characteristic path lengths range from 2.3 to 4.8, imply-
ing high overall connectivity. Comparing the clustering
coefficients and characteristic path lengths to those expected
for random graphs, we find that in all cases C � Crand

and L ≥ Lrand, satisfying the small-world properties [18] as
may be expected in correlation-based networks [33]. In the
context of climate, this suggests that there should be a rela-
tively small number of distinct clusters, or climate regions,
for each variable, which is precisely what we observed in
Fig. 3.

4.3. Geographic Network Properties

While the above measures are commonly used to
characterize all kinds of complex networks, a quantity
called area weighted connectivity was proposed specifically
to correct for the bias in the degree sequence induced by the
angularly even spacing of grid points on the sphere [12]. If
a node i is connected to ki other nodes, then its connectivity
C̃i is computed as

C̃i =
ki∑

j=1

cosλj�A/
∑

over all λ and ϕ

cosλ�A, (8)
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(a) (b) (c)

Fig. 4 Area weighted connectivity is an alternative network property for spatial data. (a) Sea surface temperature; (b) geopotential height;
(c) vertical wind speed

where �A is the grid area, λ is the latitude and ϕ

is the longitude [12]. In addition to the full network,
we performed the same calculation for separate networks
constructed from points only in the Northern (30◦N–90◦N),
Tropical (30◦S–30◦N), and Southern (90◦S–30S◦) regions.
This quantity can be plotted against its observed probability
on a log–log plot, similar to the degree distribution.
Representative examples for three different variables are
depicted in Fig. 4.

Panel (a) of Fig. 4 is based on sea surface temperature
data very similar to Fig. 2 in Ref 34, and indeed the solid
black lines agree quite closely. In their article, the authors
assert that for most of the scales involved the distribution
is a power law, but we would caution that this is only true
for a limited subset in the center of the graph selected for
display; when extending the axes to their full extent, this
property no longer seems to hold. Moreover, for different
variables we see quite different distributions. For example,
for geopotential height more nodes are connected to a larger
fraction of the globe—this is especially true for the tropical
region, where one would expect relatively homogeneous
pressure levels. In contrast, the connectivity of the network
for vertical wind speed is consistently lower, supporting the
notion that wind patterns are a localized activity.

For a more detailed understanding of the geographic
network properties, we also examine the relative frequency
distribution of link lengths for each variable. The great-
circle distance (shortest path between two points on
a sphere) was computed using Vincenty’s formula [35],
which is robust to the rounding errors of other formulae
when performing the computations on a computer. Figure 5
shows the distributions for each variable. To aid in our
interpretation, Panel (h) of Fig. 5 shows an annotated
schematic of an idealized histogram which highlights two
regions: a large number of short edges indicates that
a variable has high spatial autocorrelation, a property
embodied by Tobler’s First Law of Geography, which

states that ‘everything is related to everything else, but
near things are more related than distant things’ [36]; a
‘fat tail’ suggests the presence of teleconnections within
that same variable, that is, climatologically similar behavior
in locations that are geographically separated (see also
Ref 37). We should note here that all of the histograms
show a lower value for very short distances. Though
counterintuitive, these values are in fact correct: because
the nodes are evenly spaced angularly on the sphere, grid
points near the equator are much further apart (>500 km)
than points near the poles, and hence will never appear in
the first two bins.

Examining the individual panels of Fig. 5, we find
that all but one of the variables peak at short distances,
exhibiting a ‘nearest neighbor’ property reflective of the
spatial autocorrelation one would expect in climate data.
Vertical wind speed is the exception, which shows much
lower correlation overall (panel (h) of Fig. 5) due to its
association with very localized (sub-grid scale) convective
activity [32], resulting in poor clustering (Panel (h) of
Fig. 3). In contrast, variables in the middle row of Fig. 5
do exhibit some spatial autocorrelation but virtually no
long-range connections. Thus, the corresponding networks
resemble a mesh structure wherein nodes are connected to
their closest neighbors, which, as shown in panels (d)–(f)
of Fig. 3, has favorable implications for clustering. In fact,
the two hydrological variables and wind speed show some
similar patterns, for example tropical clusters stretching
from the Western coast of South America (near Peru) all
the way into South-East Asia (potentially related to the
Intertropical Convergence Zone). Variables in the top row
of Fig. 5 exhibit both the highest local connectivity as well
as varying degrees of teleconnection strengths—properties
associated with small-world behavior and reflective of
the network topology seen in Section 4.1. For example,
recall that the clusters for sea surface temperature visually
appear similar to those of several other variables. However,
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(a) (b) (c)

(d) (e)

(g) (h)

(f)

Fig. 5 Relative frequency distributions of link lengths. Variations in the distribution for different variables can be explained by their
climatological interpretation. (a) Sea surface temperature; (b) sea level pressure; (c) geopotential height; (d) precipitable water; (e) relative
humidity; (f) horizontal wind speed; (g) vertical wind speed; (h) ideal interpretation

communities 5, 7, and 10 (panel (a) of Fig. 3) each consist
of two disjoint regions, which account for the ‘fat tail’ in
the distribution.

In this section, we demonstrated that complex networks
are a suitable representation for climate data as they

provide a means for various types of descriptive analysis,
giving rise to interesting domain insights. Building on the
results obtained thus far—most notably the clusters—we
now shift focus to the predictive aspect of our proposed
framework.
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Fig. 6 Target regions for climate indices

5. PREDICTIVE MODELING

Here we consider one specific predictive task, namely
the extraction of climate indices from observed data.
A climate index can be defined as a ‘diagnostic tool used
to describe the state of the climate system and monitor
climate’ [38], that is, it summarizes climatic variability at
local or regional scale into a single time series and relates
these values to other events. One of the most studied
indices is the southern oscillation index (SOI), which is
strongly correlated with the El Niño phenomenon [39] and
is predictive of climate in many parts of the world; see
Ref. 10 for other examples. Thus, ocean dynamics are
known to have strong influence over climate processes on
land, but the nature of these relationships is not always
well understood. This motivates the solution strategy for
our predictive modeling task, which lies in leveraging the
descriptive insights from the previous section for prediction.
Specifically, we are able to re-use the clusters obtained in
Section 4.1 as potential climate indices for predicting the
behavior of variables on land. Other researchers have also
reported on relationships between the properties of climate
networks and the El Niño index, albeit in slightly different
contexts [13,34,40]. Note that there may be other variables
that contain additional predictive value, for example,
auxiliary measurements over land (see, e.g., Refs. 41, 42).
However, we focus specifically on information content
in oceanic indices for land climate (teleconnections);
identifying and evaluating these complimentary sources
of additional predictive information is itself a nontrivial
problem and thus beyond the scope of this article.

5.1. Experimental Setup

The upcoming report from the Intergovernmental Panel
on Climate Change (expected in 2013) calls for greater

attention to regional assessments, so we focus on pre-
diction at regional scales. Accordingly, we selected nine
target regions illustrated in Fig. 6. Some of these, like
Peru and the Sahel, are known to have relationships with
major climate indices; others were included to provide a
representative set of regions around the world. Here we
consider two climate variables in each region, air tempera-
ture and precipitation (also obtained from the NCEP/NCAR
Reanalysis Project [8]), for a total of 18 response variables
(nine regions × two variables). We chose these primar-
ily for their relevance to human interests as they directly
influence our health, environment, infrastructures, and other
man-made systems.

Recall that we constructed a separate network for each
of seven variables over the sea and applied community
detection to obtain clusters (Fig. 3). The number of clusters
is different for each variable as it depends on network
properties, for a total of 78 clusters altogether. In the
following, we outline the step-by-step procedure used to
obtain our experimental results.

Step 1: For each network cluster, create a corresponding
predictor by averaging over all grid points within the
cluster.

Step 2: Similarly, for each target region, create two
response variables by computing the average temperature
and precipitation over all grid points.

Step 3: Divide the data into 50-year training set
(1948–1997) and 10-year test set (1998–2007).

Step 4: For each of the 18 response variables, build a
linear regression model on the training set and generate
predictions for the test set.

While it is conceivable to use other learning algorithms
in Step 4, we opted for linear regression as it maintains the
interpretability of the model, which is important to domain
scientists. Nonetheless, future work could explore alternate
prediction algorithms in this context.
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For comparison, we also cluster the data using k-means
with Euclidean distance, a clustering technique named
one of the top ten data mining algorithms [43] and
standard method used in the climate domain (see, e.g.,
Refs. 19,44,45). Since determining an appropriate number
of clusters k is itself a difficult problem, we perform a
comprehensive test using three different settings: k = 5,
k = 10, and k equal to the number of clusters kn obtained
using community detection to assure the fairest possible
comparison (where k differs between variables). Steps 1–4
are then repeated using each of these alternate clusterings.

To quantify performance, we calculate root mean square
error (RMSE) between predictions and actual (observed)
data. Unlike simple correlation, which measures on covari-
ance between two series, RMSE incorporates notions of
both variance and estimator bias in a single metric.

5.2. Experimental Results

The RMSE scores for the prediction experiments are
summarized in Table 2; the lowest (best) and highest

Table 2. RMSE scores for predictions of temperature and
precipitation using network clusters and k-means clusters for
k = 5, k = 10, and k = kn, the number of network clusters for
each variable. The best (bold) and worst (italic) scores in each row
are indicated. A checkmark (�) at the bottom of a column denotes
that the network-based clusters are significantly better according
to the Friedman test of ranks at 95% confidence.

k -Means

Region Network clusters k = 5 k = 10 k = kn

A
ir

te
m

pe
ra

tu
re

SE Asia 0.541 0.629 0.694 0 .886
Brazil 0.534 0 .536 0.532 0.528
India 0.649 0.784 1 .052 0.791
Peru 0.468 0.564 0 .623 0.615
Sahel 0.685 0.752 0.750 0 .793
S Africa 0.726 0.711 0 .968 0.734
East US 0.815 0.824 0 .844 0.811
West US 0.767 0.805 0.782 0 .926
W Europe 0.936 1 .033 0.891 0.915

Mean 0.680 0.737 0 .793 0.778
StdDev ±0.150 ±0.152 ±0 .165 ±0.135

P
re

ci
pi

ta
ti

on

SE Asia 0.665 0.691 0 .700 0.684
Brazil 0.509 0.778 0 .842 0.522
India 0.672 0.813 0.823 0 .998
Peru 0.864 1 .199 1.095 1.130
Sahel 0.533 0 .869 0.856 0.593
S Africa 0.697 0 .706 0.705 0.703
East US 0.686 0.750 0 .808 0.685
West US 0.605 0.611 0 .648 0.632
W Europe 0.450 0 .584 0.549 0.542

Mean 0.631 0.778 0 .781 0.721
StdDev ±0.124 ±0.182 ±0.156 ±0 .207

Friedman test (α = 0.05) � � �

(worst) scores in each row are shown in bold and italics,
respectively. First, we note that the clusters extracted from
climate networks consistently produce as comparable or
better predictions than the clusters obtained from k-means.
Moreover, no one setting of k seems to work best in
all cases. Network clusters also have the lowest mean
RMSE across both temperature and precipitation, affirming
that they are effective in various predictive settings. To
support this notion, we evaluate network-based clusters
relative to the other methods using the Hochberg procedure
of the Friedman test [46] at 95% confidence intervals—a
nonparametric way to determine statistical significance
of performance rankings across multiple experiments.
The outcomes are included at the bottom of Table 2; a
checkmark (�) denotes that the network-based clusters are
significantly better than the clusters in that column and,
indeed, we find this to be true in all three cases.

Predictive Power: Having established network-based
clusters as the better candidate indices, we are faced with
the question whether they offer any true predictive power.
An answer must ascertain that the clusters contain useful
information. We do this by comparing directly to two
baseline approaches, namely by calculating the ‘lift’ over
random predictions as well as a univariate predictor. Lift for
region R and variable v is defined as percent improvement
of the network-based predictions,

Lift(R, v) = ŷalt − ŷnet

ŷalt
, (9)

where ŷnet is the RMSE obtained using network-based
clusters and ŷalt is the RMSE from the alternate method,
that is, random or univariate prediction as explained below.

First, we perform a randomization experiment, wherein
we scramble the order of the test data and recompute
RMSE. More specifically, we randomly rearrange the time
series for the 10-year test period and compute the RMSE
to the network-based predictions. Results are shown in
Table 3 under the heading ‘Random’; each reported value
represents an average taken over 10 000 runs with different
random seeds. For temperature, we observe gains across all
regions, with lifts ranging from 8 to 60%. For precipitation
improvements are more modest, ranging from 5 to 26% in
seven of the nine regions. The two exceptions are the Sahel
and South Africa, where precipitation is generally low and
anomalies are infrequent, making prediction more difficult.
Nonetheless, these results suggest that the clusters do in
fact have some predictive power.

Second, we compare the network-based predictions to a
univariate predictor. Univariate here means that only the
response variable itself is used to generate predictions. The
procedure starts by building a linear regression model on
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Table 3. RMSE scores and lift (% improvement) of network-based clusters over univariate and random predictions of temperature and
precipitation. The best score in each row is indicated in bold.

Network Random Univariate

Region RMSE RMSE Lift (%) RMSE Lift (%)

A
ir

te
m

pe
ra

tu
re

SE Asia 0.541 0.791 32 0.621 13
Brazil 0.534 0.834 36 0.659 19
India 0.649 0.634 18 0.634 −2
Peru 0.468 1.181 60 0.722 35
Sahel 0.685 0.964 29 0.758 10
S Africa 0.726 0.900 19 0.766 5
East US 0.815 0.963 15 0.862 5
West US 0.767 0.917 16 0.805 5
W Europe 0.936 1.019 8 0.917 −2

Mean 0.680 0.929 0.749
±StdDev 0.150 0.123 0.102

P
re

ci
pi

ta
ti

on

SE Asia 0.665 0.809 18 0.732 9
Brazil 0.509 0.575 12 0.787 35
India 0.672 0.757 11 0.638 −5
Peru 0.864 0.909 5 0.841 −3
Sahel 0.533 0.521 −2 0.520 −2
S Africa 0.697 0.710 2 0.669 −4
East US 0.686 0.781 12 0.665 −3
West US 0.605 0.720 16 0.649 7
W Europe 0.450 0.604 26 0.492 8

Mean 0.631 0.666 0.710
±StdDev 0.124 0.113 0.124

the training set of the target series and making a prediction
for the next month. The new value is then added to the
training data and the process repeated until predictions are
made for the entire testing period. This provides a measure
of predictability in the time series itself, that is, absent any
help from climate indices.

The results are shown in Table 3 under the heading ‘Uni-
variate’. We find that, for temperature, the network clusters
improve scores by 5–35% in seven of the nine regions
and thus definitely add predictive power. In contrast, for
precipitation the answer is not so straightforward as scores
actually decrease slightly in five of the nine regions, with
low to moderate gains in the other four. We postulate that
this discrepancy is largely a reflection of inherent differ-
ences between the two variables which make patterns in
precipitation generally more difficult to model and predict.
Still, it is apparent that network-based clusters add predic-
tive power above and beyond the baseline.

Model Parsimony and Interpretability: We have shown
convincingly the value of network-based clusters for
prediction in climate, yet it is important to effectively
communicate our results and make them accessible to
climate scientists. One of the biggest challenges stems
from the fact that many different clusters contribute to
each index, while traditional indices are composed of at

most a handful measurements. Therefore it is pertinent
that we address the issue of model parsimony. Drawing
on our experience in data mining, the intuitive solution is
feature selection. We apply a filter-based technique called
correlation-based feature selection (CFS) that finds subsets
of features, which are highly correlated with the dependent
variable but uncorrelated with each other [47]. Specifically,
it uses a heuristic to simultaneously find the subset of
predictors (clusters) that maximize predictability while
minimizing the correlation among them. Consequently, the
number of clusters may vary for each response variable. We
repeat all predictive tasks after CFS and compute RMSE
scores and lift as before; the results are shown in Table 4.
We find that the number of selected clusters ranges from
6 to 18, a significant reduction from the original total of
78. Although not all components contribute equally, this
number of clusters is much more manageable for inspection
by a domain expert (see Section 5.3).

Furthermore, we observe another well-known advantage
of feature selection: the parsimonious model generalizes
better to the unseen data, resulting in lower RMSE scores
in many cases (hence the negative lift values). So not only
does this postprocessing step enhance interpretability of
the regression models, but it has the potential to increase
predictive power on held-out data at the same time. In the
following, we reiterate why the methods and results of this
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Table 4. RMSE scores and lift (% improvement) of all network-
based clusters over ‘selected’ subsets of size k obtained using
feature selection. The best score in each row is indicated in bold.

Network Selected

Region RMSE k RMSE Lift (%)

A
ir

te
m

pe
ra

tu
re

SE Asia 0.541 9 0.539 0
Brazil 0.534 11 0.595 10
India 0.649 17 0.532 −22
Peru 0.468 9 0.524 11
Sahel 0.685 15 0.678 −1
S Africa 0.726 13 0.690 −5
East US 0.815 9 0.730 −12
West US 0.767 12 0.764 0
W Europe 0.936 9 0.855 −9

Mean 0.680 0.656
±StdDev 0.150 0.117

P
re

ci
pi

ta
ti

on

SE Asia 0.665 10 0.610 −9
Brazil 0.509 15 0.591 14
India 0.672 12 0.617 −9
Peru 0.864 18 0.779 −11
Sahel 0.533 18 0.496 −7
S Africa 0.697 8 0.679 −3
East US 0.686 15 0.639 −7
West US 0.605 18 0.605 0
W Europe 0.450 6 0.446 −1

Mean 0.631 0.607
±StdDev 0.124 0.097

article are relevant to the climate domain and explain how
they might be used to promote our current understanding.

5.3. Domain Interpretation: Advancing Climate
Science

Due to space constraints we cannot investigate each
individual clustering with respect to its climatological
interpretation, but we present several illustrative examples.
To this end, we perform a thought experiment that compares
our findings with a baseline performance estimate one might
expect based on domain knowledge alone. Specifically,

based on expertise one would likely choose a much smaller
subset of variables so we ask the question, How do clusters
obtained with our data mining method compare to those
supported by domain knowledge?

Temperature in Peru: First, we focus on the prediction of
air temperature in Peru. We chose this example because it
is closely related to the El Niño phenomenon, and therefore
domain insights on climate predictability in this region are
plentiful. The predictions for all ‘selected’ network clusters
are shown in Fig. 7, along with the actual (observed) data.
It is apparent that the predictive model works quite well
here, capturing all the major variability. In fact, the RMSE
score of 0.468 is among the lowest of any prediction task
(Table 2).

The following nine clusters were selected within
our framework: SST-5,6; GH-4; PW-7; HWS-1; VWS-
1,11,12,14 (refer to Fig. 3). But a domain expert would
likely select only three of these: SST-5, SST-6, and PW-
7, partly because they are in close proximity to Peru, but
also cover the El Niño regions. We repeat the regression
using only these three clusters and obtain an RMSE of
0.552. This value is lower than any of the k-means clusters,
showing that domain knowledge outperforms a naı̈ve data
mining method in this case. However, the network clusters
perform better than domain insights alone, suggesting that
there is additional predictive power to glean from the data.
For example, based on our observations in Section 4.1 one
would be unlikely to ever select any clusters based on VWS,
but including them seems to improve predictive ability here.
This poses an open question for domain scientists, namely
whether there exist any convective patterns that may have
some predictability.

Temperature in India: Second, we look at the prediction
of air temperature in India (Fig. 8), because here the cluster
selection provided the largest absolute improvement in
performance. A total of 17 clusters were selected within
our framework, namely: SST-4,5,7; GH-3; PW-1,6,7; RH-
1,2,10,15; HWS-3; VWS-9,11,13,14,15 (refer to Fig. 3).

Fig. 7 Prediction of air temperature in Peru using all (red) and ‘selected’ (blue) network clusters compared to observations (black). Best
viewed in color
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Fig. 8 Prediction of air temperature in India using all (red) and ‘selected’ (blue) network clusters compared to observations (black). Best
viewed in color

Fig. 9 Prediction of precipitation in Brazil using all (red) and ‘selected’ (blue) network clusters compared to observations (black). Best
viewed in color

Of these, domain expertise would dictate that we select
all three of the SST clusters because they surround other
monsoon regions, GH-3, which captures the tropics in
general, and HWS-3 due to spatial proximity. Repeating the
regression using only these four clusters yields an RMSE of
0.572, which is again significantly lower than any of the k-
means clusters. It is also lower than using all network-based
clusters but the feature selection is able to improve upon
it, supporting the use of this postprocessing step within our
framework.

Precipitation in Brazil: Third, we consider one example
of precipitation in Brazil (Fig. 9). Here 15 clusters were
selected: SST-7,10; PW-3,9,10; RH-13; HWS-8,13,14;
VWS-1,9,10,11,13,15. On the basis of domain knowledge,
one would certainly select VWS-9 as well as PW-3 and PW-
9, which relate to atmospheric water content and convective
activity in the immediate area. In addition, one may also
include SST-7 and HWS-8 for proximity as well as HWS-
13 because of known climatic ties to the El Niño region.
Using these six clusters we obtain an RMSE of 0.659.
This value is higher than both k-means and network-based
clusters, suggesting that domain knowledge cannot improve
upon the indices extracted from data.

Discussion: The domain knowledge-based predictions
were guided in their choice of predictors by the network
clusters after feature selection. However, even this guided

prediction performed worse than the best-performing data
mining approach, suggesting that the networks succeed
in capturing certain relationships that are lost on more
naı̈ve data mining methods, and which may be nonobvious
or even nonintuitive to a domain expert. We conjecture
that the ability of networks to represent more complex
(e.g., many-to-many) relationships enhances the resulting
clusters, which in turn constitute more powerful climate
indices, but additional research is required to better
understand the underlying processes. In two of the three
case studies, domain knowledge improved predictive skills
over k-means, and in one case over complex networks
alone without the benefit of feature selection. However,
for the limited number of examples studied here the
network clusters obtained via feature selection achieve
the highest overall predictability. As such, this work
represents an important step toward knowledge discovery
from climate data. We have confirmed well-understood
insights (e.g., similarity in the spatial patterns of the clusters
of temperature and precipitable water, as suggested by the
Clausius–Clapeyron relation [30]), discovered nonintuitive
hypotheses that were verified by domain science (e.g.,
relationship between temperature and surface winds [31]),
and demonstrated the potential for discovering knowledge
from data in a relatively hypothesis-free manner, which may
advance climate science (e.g., possible long-range spatial
associations in convective patterns and their potential
predictive power on land climate).
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6. BENEFITS OF THE UNIFIED FRAMEWORK

The network-based framework developed in this article
provides a unique way for descriptive analysis and predic-
tive modeling to inform each other. Specifically:

• We have demonstrated that climate networks offer
a way to improve predictive skills by extracting
predictors based on cluster attributes. Thus, in the
context of climate, we have shown that network-based
clusters yield informative predictors via statistical
averages of the variables within each cluster.

• We argue that the predictive information content of
the clusters, especially the ones that are nonobvious
or nonintuitive, may lead to more robust descriptive
analysis. We have shown that clusters which may not
be intuitive to a domain expert can add predictive
power beyond baseline approaches, which in turn
would suggest that the clusters are not spurious.

7. FUTURE WORK

Further research is needed to investigate the following
related areas: (i) combining variables (univariate versus
multivariate) in conjunction with different functions for
weighting edges, integrating multiple edge weights into a
single network with consideration given to the interpretabil-
ity of results, and the sensitivity of these approaches to the
selection of pruning threshold; (ii) comparing the network
communities to clusters obtained using other unsupervised
learning techniques beyond k-means clustering; (iii) the
ability to interpret improvements in the predictive skills
of parsimonious representations of predictors derived from
complex network clusters, which needs to account for both
improvements over climate domain knowledge (e.g., known
ocean-based climate indices [10]) as well as the value-add
over other clustering approaches; iv incorporating tempo-
ral lags, both in the correlation measure used for network
construction as well as in the predictive models; (v) the
possibility of leveraging data-guided insights about climate
variables obtained from observations to improve climate
model projections in the future and reduce the associated
uncertainty; (vi) extending the predictive modeling and
descriptive analysis to be able to predict not just mean
processes but climate extremes (e.g., significant change
in regional climate patterns or the recurrence patterns of
extreme events).
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