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1. Introduction

Modern data mining is often confronted with problems arising
from complex relationships in data. Recently, datasets that can
be represented as graphs, or interaction networks, have received
considerable attention in various domains. Application areas in-
clude the analysis of social networks (Girvan and Newman, 2002;
Wasserman and Faust, 1994), chemical interactions between pro-
teins (Asur et al., 2007; Enright et al., 2002), transactions of goods
and services (Clauset et al., 2004), and many others. With the
increasing availability of rich network data, there is also a need
for effective and efficient analysis methods.

One problem of great interest for pattern recognition in com-
plex networks is community detection, or the unsupervised discov-
ery of densely connected subgroups which are known to exist in
many real-world networks. On the surface the concept of commu-
nities appears intuitive, and if properly arranged their structure
can be identified by visual inspection as illustrated in Fig. 1.

Of course this method is infeasible for networks larger than a
handful of nodes, prompting the development of automated detec-
tion techniques. The formulation of an algorithm and, more impor-
tantly, the validation of its output requires a more concise
definition of a community. Newman and Girvan (2004) were
among the first to address this issue and proposed modularity to
quantify the strength of community structure. This metric, based
on the intuition that nodes within the same community should
ll rights reserved.

: +1 574 631 9260.
be more tightly connected than they would be by chance, has been
adopted for a variety of uses including the validation and compar-
ison of community structures (Newman and Girvan, 2004; Pons
and Latapy, 2006), but also as an objective function for optimiza-
tion algorithms to identify communities (Clauset et al., 2004; Do-
netti and Muñoz, 2004; Duch and Arenas, 2005; Newman and
Girvan, 2004; Reichardt and Bornholdt, 2006; Ruan and Zhang,
2007). While modularity quickly became a de facto standard, we
posit that it is important to carefully evaluate its utility in discov-
ering community structure. We show here that the maximum mod-
ularity does not necessarily coincide with the correct division of the
network; in this case algorithms that maximize modularity con-
verge on a suboptimal solution, that is, miss the discovery of the
actual and meaningful communities. We demonstrate this using a
variety of metrics on diverse datasets for which the actual communi-
ties are known as ground truth.

Another issue with community detection algorithms is their
computational complexity. These methods, rooted in graph theory,
are often confounded by large networks and become fragile as
datasets approach 105–106 (or more) nodes. We believe that in or-
der to achieve this level of scalability, a method much simpler than
an optimization algorithm must be employed. To this end, we out-
line an intuitive approach to community detection based on random
walks and compare it to several published algorithms using a variety
of metrics. Our experimental results show that this simple method
is as good or better at discovering the true communities than other
more complex algorithms. Finally, we discuss several possible exten-
sions to the approach, and demonstrate its scalability on a network of
over 1 million nodes, where other methods falter.

http://dx.doi.org/10.1016/j.patrec.2009.11.001
mailto:nchawla@nd.edu
http://www.sciencedirect.com/science/journal/01678655
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Fig. 1. In many networks the nodes form communities (shaded) within which the
edges are more dense (solid lines) than between communities (dashed lines).
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1.1. Organization

The remainder of this paper is organized as follows. Sections 2
and 3 discuss validation metrics and community detection
algorithms, respectively. In Section 4 we present an experimental
evaluation of the metrics and algorithms. Section 5 elaborates on
community detection using random walks. We conclude with a
discussion of our most notable observations and findings in
Section 6.
2. Validation metrics

In this section, we examine modularity as well as several other
quantitative measures for validating the output of community
detection algorithms. While modularity relies strictly on network
structure, the other three metrics use node labels when available
and are true estimates of performance. Each method is presented
and advantages and drawbacks are discussed; the metrics are ap-
plied in the evaluation and comparison of algorithms in Section 4.

2.1. Modularity

The most widely used and accepted metric designed specifically
for the purpose of measuring quality of a network division into
communities is modularity (Q) (Newman and Girvan, 2004), calcu-
lated as follows. Assume the network has been partitioned into k
communities. Define a k� k symmetric matrix e whose element
eij is the fraction of all edges in the network that link nodes in com-
munity i to nodes in community j. Computing the trace of this ma-
trix trðeÞ ¼

P
ieii gives the fraction of all edges in the network that

connect nodes in the same community. Obviously a high value of
trðeÞ indicates strong community structure, but the trace alone is
insufficient because placing all nodes in a single community would
always result in the maximum value of trðeÞ ¼ 1. To refine the met-
ric let the row (column) sums ai ¼

P
jeij denote the fraction of

edges that connect to nodes in community i. Modularity is then de-
fined as

Q ¼
X

i

eii � a2
i

� �
¼ trðeÞ � ke2k; ð1Þ

where kxk represents the sum of the elements of matrix x. Thus Q
effectively measures the fraction of edges in the network that con-
nect nodes in the same community minus the expected value of this
quantity if the edges were placed at random. The value ranges from
Q ¼ 0, when the within-community edges are no better than ran-
dom, to Q ¼ 1, although Newman and Girvan (2004) found that
real-world networks typically range from about 0.3 to 0.7. Note that
modularity is more of a descriptive measure of data than a true per-
formance metric, because it does not strictly quantify a good or a
bad partitioning.

One advantage of modularity is that it can be computed using
only connectivity of the network, in the absence of any node labels
or other information. However, this property can also be consid-
ered a weakness because modularity is unable to incorporate
metadata (e.g. node labels) even if it is available. The empirical
comparison will help illustrate the practical consequences of this
limitation, but first we present several alternate metrics for vali-
dating community structure from statistics and clustering litera-
ture, which operate under the assumption that true node labels
are known a priori.

2.2. Accuracy

One very crude method of quantifying the ability of a commu-
nity detection algorithm to identify the true network structure is
Accuracy. Given a network consisting of n nodes wherein each node
v is assigned a true label ltv , the accuracy of a particular division of
a network is calculated as follows. Assume the network has been
partitioned into communities. For each community i, scan all nodes
in i and identify the true label that occurs most frequently; this la-
bel is assigned as predicted label lpv to each node v in the commu-
nity. The accuracy is then defined as the fraction of all nodes whose
predicted label lpv equals the true label ltv :

Accuracy ¼
Pn

v¼1equal ltv ; lpv
� �

n
; ð2Þ

where

equal x; yð Þ ¼
1 if x is identical to y

0 otherwise

�
:

This metric is easily computed from the data and takes into ac-
count (only) the node labels for evaluating the division of the net-
work. Much like a classification task, it views each node
individually and does not consider the communities as entities or
relationships between them.
2.3. Rand Index

The Rand Index is a statistical tool used in clustering literature
to measure the degree of overlap between two partitionings
(Rand, 1971). It also requires two labels for each node – one cor-
responding to its true community and one to the predicted com-
munity – but the assignment is more straightforward. Given a
network wherein each node v is assigned a true label ltv , the Rand
Index is computed as follows. Assume the network has been par-
titioned into communities. For each community i, simply assign
every node the predicted label lpv ¼ i and define the following
quantities:

a = pairs of nodes i; j s.t. lti ¼ ltj, lpi ¼ lpj

b = pairs of nodes i; j s.t. lti ¼ ltj, lpi – lpj

c = pairs of nodes i; j s.t. lti – ltj, lpi ¼ lpj

d = pairs of nodes i; j s.t. lti – ltj, lpi – lpj

The Rand Index is then given by the ratio:

Rand Index ¼ aþ d
aþ bþ c þ d

¼ aþ d
n

2

� � ; ð3Þ
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and captures the extent to which the two partitionings agree with
one another. The possible values range from 0 when there is no
overlap to 1, indicating complete agreement. The Rand Index is
also easily computed but, unlike accuracy, it incorporates a notion
of communities by evaluating the relationship between pairs of
nodes. One criticism of the Rand Index is that the expected value
of two random partitions does not take a constant value (e.g.
zero).
2.4. Adjusted Rand Index

To correct for the scaling problem Hubert and Arabie (1985)
proposed the Adjusted Rand Index (ARI), which varies between 0
and 1 according to expectation of random partitions. The expres-
sion for ARI takes the general form (index � expected index)/(max-
imum index � expected index), which can be computed as follows.
Let nij be the number of nodes that have true label lti and predicted
label lpj, and let ni� and n:j be the number of nodes labeled lti and lpj,
respectively. These values can be summarized in a confusion ma-
trix as shown in Table 1.

The Adjusted Rand Index can then be computed as
ARI ¼

P
i;j

nij

2

� �
�
P

i

ni�

2

� �P
j

n�j
2

� �� �	
n

2

� �

1
2

P
i

ni�

2

� �
þ
P

j

n�j
2

� �� �
�
P

i

ni�

2

� �P
j

n�j
2

� �� �	
n

2

� � :

ð4Þ

This formulation ensures that the expected value for a random
partitioning is ARI ¼ 0, while the value for a perfect agreement re-
mains ARI ¼ 1. ARI has all the same advantages of the Rand Index,
but it is a more robust measure. An independent study of different
indices for measuring agreement between partitions recom-
mended that the ARI be used to validate clustering results Milligan
and Cooper, 1986.
2.5. Normalized mutual information

The final metric we consider is an information-theoretic mea-
sure of the agreement between two partitions called normalized
mutual information (NMI) (Fred and Jain, 2003). Similar to the Rand
Indices, NMI assumes that the network was partitioned into com-
munities and in each community i, every node v has been assigned
the label lv ;p ¼ i. NMI is computed as follows. If kt denotes the
number of true communities, then treating frequency counts like
probabilities gives the entropy of true partition T as HðTÞ ¼
�
Pkt

i¼1
nt

i
n log

nt
i

n


 �
, where nt

i represents the number of nodes in com-

munity i. The mutual information between true partition T and
predicted community structure P can thus be computed as
Table 1
Overlap of partitions – or in this case communities – used to compute ARI.

Truenpredicted lp1 lp2 � � � lpkp
Sums

lt1 n11 n12 � � � n1kp
n1�

lt2 n21 n22 � � � n2kp
n2�

..

. ..
. ..

. . .
. ..

. ..
.

ltkt
nkt 1 nkt 2 � � � nkt kp

nkt �

Sums n�1 n�2 � � � n�kp
n��� ¼ n
IðT; PÞ ¼
Pkt

i¼1

Pkp

j¼1

ntp
ij

n log
ntp

ij

n =
nt

i
n �

np
j

n

� �� �
, and normalizing by the

maximum value HðTÞþHðPÞ
2 leads to the alternate definition:

NMI ¼
�2
Pkt

i¼1

Pkp

j¼1ntp
ij log

ntp
ij
�n

nt
i
�np

j

� �

Pkt
i¼1nt

i log
nt

i
n


 �
þ
Pkp

j¼1np
j log

np
j

n

� � : ð5Þ

This formulation reveals one drawback of NMI, namely that this
quantity is more complicated to compute from the output of a
community detection algorithm than those previously discussed.
However, it provides a statistically sound method for comparing
different partitionings and has been shown to work well in practice
(Fred and Jain, 2003).
3. Community detection

We now turn our attention to methods for automatically identi-
fying community structure in complex networks. In this section, we
consider three algorithms from literature: FastQ, which explicitly
employs modularity optimization to guide hierarchical agglomera-
tion (Clauset et al., 2004); WalkTrap, which performs agglomera-
tion with a different heuristic (Pons and Latapy, 2006); and MCL,
which partitions the network by simulating stochastic flow (van
Dongen, 2000). In addition, we propose a fourth, much simpler ap-
proach to community detection based on random walks. An empir-
ical evaluation follows, which compares the different algorithms
presented here using all of the metrics described in Section 2.
3.1. Fast modularity

The fast modularity1 algorithm (FastQ) is one of the more recent
among the modularity maximization approaches (Clauset et al.,
2004). The basic premise of the algorithm is the following: cognizant
that optimizing modularity directly by trying all possible partitions
is computationally infeasible (Brandes et al., 2007), FastQ instead
uses modularity to guide a greedy hierarchical agglomeration pro-
cess. Initially, each node is assigned to its own cluster. The task is
thereby reduced to (repeatedly) finding an appropriate pair of nodes
or communities, connected by an edge, to merge into a single new
community.

Two questions remain: Which is the best pair to merge? and
when should communities stop merging? The answer to both is,
of course, modularity. To select a pair to merge, the algorithm com-
putes Q for the current structure. Each possible merge operation is
then considered and the one with the highest DQ is selected. Mod-
ularity also determines the final partitioning. The algorithm is run
to completion (until all nodes belong to one giant community) pro-
ducing a dendrogram, and Q is recorded at each iteration. A plot of
Q vs. the merge steps can then help determine the appropriate
point to cut the dendrogram. The global maximum likely corre-
sponds to the best community structure, or a domain expert can
select among multiple local maxima.

The FastQ algorithm has a computational complexity of
Oðmd log nÞ, which could be Oðn3 log nÞ in the worst case (if
m � n2 and d � n). But in most real-world networks m � n and
d � logðnÞ, resulting in a complexity of Oðnlog2nÞ (Clauset et al.,
2004).
1 Source code for the fast modularity algorithm is available for download at http://
cs.unm.edu/~aaron/research/fastmodularity.htm.

http://cs.unm.edu/~aaron/research/fastmodularity.htm
http://cs.unm.edu/~aaron/research/fastmodularity.htm
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3.2. WalkTrap

As the name suggests, the WalkTrap2 algorithm employs the idea
of random walks through the network for community detection
(Pons and Latapy, 2006). More specifically, the authors propose a
node similarity measure based on short walks and show that it pro-
vides sufficient information to be used (instead of modularity) for
community detection via hierachical agglomeration. However, mod-
ularity is still applied as stopping criterion and metric for comparing
their results to other algorithms. WalkTrap has complexity Oðmn2Þ,
which could be Oðn4Þ in the worst case but according to Pons and
Latapy (2006) behaves as Oðn2 log nÞ on real-world networks.
3.3. Markov clusters

The Markov cluster algorithm3 (MCL) is implemented as a simula-
tion of flow through the network (van Dongen, 2000), but the under-
lying intuition here also stems from a contemplation of random
walks. The author stipulates that a random walker placed in a net-
work would spend a disproportionately long time walking around
the same community before crossing into a different one. Therefore,
assuming the walk starts at some node i, if another node j has a high
probability of being visited during the random walk, then the prob-
ability of nodes i and j belonging in the same community is also high.

Building on these principles, the MCL algorithm uses a series of
alternating expansions and inflations to identify weakly connected
components by simulating network flow until an equilibrium state
is reached. The amount of flow along a given path is related to the
likelihood of traversing that path, similar to the probability of
starting at some node i and visiting node j. As the experimental re-
sults in Section 4 show, this method is quite effective at identifying
community structure. However, performance comes at a premium:
the algorithm uses a matrix-representation of the network and
operations rely on manipulating this data, which can be costly both
in space and time. Therefore, using the default settings only work
for relatively small networks, and several parameters may require
tweaking to process larger networks.

The MCL algorithm has complexity Oðn3Þ, but van Dongen
(2000) describes an optimization which, under certain assump-
tions, can significantly reduce the effective execution time for
sparse networks.
3.4. Proposed method: random walks

The authors of the two previous methods both note that the
behavior of a random walker in a network can be related to the
concept of a community, yet only use this notion implicitly in their
algorithms. We implemented a method that applies this idea di-
rectly by actually taking random walks. It only seems reasonable
that a random walker with a limited number of steps is more likely
to remain within the community than crossing community bound-
aries; keeping track of nodes visited during the walk serves as evi-
dence that they should belong to the same community. We
exploited this property to devise a simple, intuitive method for
community detection using random walks.

The basic idea is to perform many short random walks and
interpret visited nodes during the same walk as an indication that
they belong in the same community. This information is aggre-
gated over all walks and used as the basis for creating a consensus
clustering representing the community structure of the network.
Pseudocode outlining this procedure is shown in Algorithm 1.
2 Source code of the WalkTrap algorithm is available for download at http://
www.liafa.jussieu.fr/~pons/index.php?item=prog.

3 Source code of the MCL algorithm is available at http://micans.org/mcl/#source.
Algorithm 1. Community detection with random walks

Input: num steps, the length of the random walks
1: for all nodes i = 1, . . .,n, j = 1, . . .,n do
2: S½i�½j� ¼ 0
3: end for
4: for each node start node ¼ 1; . . . ; n do
5: i ¼ start node
6: C ¼ fstart nodeg
7: for number of steps h = 1, . . .,num_steps do
8: randomly select next node from neighborsðiÞ
9: C ¼ C [ fnext nodeg
10: i ¼ next node
11: end for
12: for each node i 2 C do
13: for each node j 2 C, i – j do
14: S½i�½j�þ ¼ 1
15: end for
16: end for
17: end for

We first define an n� n similarity matrix S to aggregate the
walks, where each entry S½i�½j� denotes the similarity of nodes i and
j; all entries are initialized to zero. Every node in the network is then
used as starting point for a random walk once. From that node some
user-specified number of steps num steps is taken through the net-
work, selecting the next node probabilistically from all neighbors
(a node may be visited any number of times during this walk).

Nodes reached during one such walk are recorded in set C as
evidence of belonging to the same community. After each walk, en-
tries in S corresponding to the nodes in C are incremented. The
number of steps can either be determined based on some graph-
theoretic measure (e.g. diameter, number of nodes) or provided
as input by the user. Once all walks are complete, each entry in
the matrix denotes how often two nodes appeared along the same
walk. A higher value indicates an increased likelihood of belonging
to the same community.

Now we are left with a similarity matrix and the task of extract-
ing community structure in an efficient manner, which is analogous
to the problem of clustering spatial data. We use an agglomerative
technique similar to the hierarchical clustering schemes described
by Johnson (1967). The general idea is to iteratively merge nodes
into communities according to their similarities, starting with the
highest. Algorithm 2 outlines this procedure, where dimðSÞ indi-
cates the dimension of the similarity matrix.

Algorithm 2. Merging clusters into a consensus clustering
representing the community structure of the network

1: Let C ¼ f1;2; . . . ; ng be the set of communities

2: while argmax

ði;jÞ
S½i�½j� > 0 do

3: ðmax i;max jÞ ¼ argmax
ði;jÞ

S½i�½j�

4: for each cluster m ¼ 1 . . . dimðSÞ do
5: S½max i�½m� ¼mergeðS½max i�½m�,S½max i�½max j�Þ
6: end for
7: Remove column max j from S
8: C �max i ¼ C �max i [ C �max j
9: Remove cluster C �max j from C
10: end while
11: return set of communities C
With this procedure, the dimension of the similarity matrix is
reduced by one at each step. Different variations of the algorithm

http://www.liafa.jussieu.fr/~pons/index.php?item=prog
http://www.liafa.jussieu.fr/~pons/index.php?item=prog


Table 2
Summary of network datsets.

Dataset Nodes Edges Communities

Karate 34 78 2
Risk 41 83 6
Football 115 613 12
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arise from the way the new similarities are computed when the
rows (columns) corresponding to two nodes or communities are
merged (line 5). Several options including the minimum, maxi-
mum, and mean methods are described in literature Johnson
(1967), Sokal and Sneath (1963). We empirically determined that
the mean method works best for merging networks; results are
shown in the next section. Depending on the agglomeration meth-
od, the complexity can be Oðn2 log nÞ or OðnÞ. We detail the com-
plexity analysis in Section 5.2.
4. Experimental results

In this section we present our experiments evaluating the dif-
ferent community detection algorithms using various metrics;
algorithm scalability is discussed in Section 5. We begin by
describing the datasets used, followed by individual subsections
explaining the setup for each experiment along with the corre-
sponding results and analyses.

4.1. Datasets

Because this work demands thorough qualitative and quantita-
tive evaluation of the experimental results, datasets used for eval-
uation satisfy the following criteria:

� True community structure known a priori (node labels)
� Size of dataset sufficiently small to visualize & interpret results by

inspection
� Suitable for all algorithms (for example, some require full

connectivity)

In addition, we limited ourselves to publicly available or easily
reproducible datasets, resulting in the selection of the following
three real-world networks: Zachary (1977) karate club, a map of
the popular board game Risk4, and a network of NCAA Division-I
football programs (Girvan and Newman, 2002). Properties of these
datasets are summarized in Table 2 and visualizations of the net-
works, including their true community structure as indicated by
the node shading, are shown in Figs. 2–4.

4.2. Merging the similarity matrix

We remind the reader of our discussion about computing new
distances for the similarity matrix when merging clusters in Sec-
tion 3.4. Before evaluating the algorithms and validation metrics,
we first want to determine which agglomerative method is the
most effective. If we assume clusters i and j are getting merged
and let dði [ j; kÞ be the distance of the new cluster fi [ jg to some
arbitrary cluster k, then we consider the following options:

(1) Minimum distance: dði [ j; kÞ ¼ minðdði; kÞ; dðj; kÞÞ
(2) Maximum distance: dði [ j; kÞ ¼ maxðdði; kÞ; dðj; kÞÞ
(3) Mean distance: dði [ j; kÞ ¼ dði;kÞþdðj;kÞ

2

The algorithm was implemented using a walk length equal to
the number of nodes in the network. We performed experiments
on all three datasets and cut the dendrogram at the (known) num-
ber of true communities. To account for the element of randomness
in the algorithm, all values reported here are an average of ten runs
using different seeds. The results are shown in Table 3.

For space reasons we report only modularity as this is a tangen-
tial result, but we performed the same experiments with other
metrics as well and found trends consistent with those shown
4 http://en.wikipedia.org/wiki/Risk_(game).
here. The most important observation is that rank order of the
three distance metrics is identical across all datasets, namely mean
performs best, followed closely by max, with min in distant third
place. We only use mean distance for the remaining experiments.

4.3. Evaluating validation metrics and community detection
algorithms

This section contains our most significant empirical results. We
ran each algorithm discussed in Section 3 on all three datasets and,
for every output, computed all metrics presented in Section 2. We
also provide the modularity for the true communities as reference.
The results are summarized in Table 4.

We used default parameters except in the following case. All
algorithms from literature found the correct number of communi-
ties for the Karate and Risk networks. However, for the Football
dataset two of the algorithms produced the incorrect number of
communities – six for FastQ and ten for WalkTrap. To ensure a fair
comparison we subsequently provided the algorithms with the
correct number (twelve) and repeated the experiments. Results
from these runs are shown under the heading Football-12. We rank
the algorithms according to their performance as measured by the
different metrics. For the Football network, we always use the bet-
ter of the two values (Football or Football-12). In case of a tie
among algorithms, the average rank is assigned to each. In the
rightmost column we also report the average ranks for each metric
where the algorithm with the highest rank is shown in bold. In the
following subsections we provide a discussion and analysis of the
results.

4.3.1. Validation metrics
We first assess our concern that the maximum modularity does

not necessarily correspond to the true communities in the net-
work. As shown in Table 4, for each network at least one algorithm
finds a division with modularity greater than the true communi-
ties. We also observe that even modularity close to that of the true
communities does not mean that the correct structure was found.
For example, the division of the Football network produced by
FastQ has a modularity of 0.577, the same value as the true com-
munities. However, the other metrics suggest that this is deceiving
as the partitioning obtained with FastQ is actually quite dissimilar
from the true communities. Further, it is worth noting that higher
modularity does not imply better structure, as the correct division
for the Karate network has a modularity of only 0.371 but even
poor divisions of the Football network exceed 0.5. Therefore we
caution against the use of modularity as the only criterion for the
evaluation and comparison of community detection algorithms
and instead advocate a combination of metrics evaluating both
the structure and the agreement with true communities to provide
a more robust validation.

4.3.2. Algorithm comparison
Here we compare algorithm performance by examining average

ranking over all datasets for each of the validation metrics. First,
we find that FastQ produces the highest modularity, which is not
surprising since the algorithm greedily optimizes on modularity.
WalkTrap and random walks rank slightly lower with similar

http://en.wikipedia.org/wiki/Risk


Fig. 3. Risk map; node shading indicates the six distinct continents in the game.

Fig. 2. Zachary’s karate club network; node shading indicates group membership.
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values, while MCL comes in last place for all datasets. However,
when we move beyond modularity and determine how successful
each algorithm is at discovering true network structure, the results
look drastically different. We find that FastQ actually ranks last for
accuracy, primarily due to difficulties with the football network.
Random walks achieve the highest accuracy on average, with the
other two algorithms falling inbetween. These trends largely hold
for the other metrics as well. Rand Index and its variant ARI pro-
duce very similar rankings. Most notably, random walks again
achieve the highest rank, followed by MCL, FastQ, and WalkTrap.
NMI also echoes these findings, although it is somewhat more
favorable for FastQ than the others. The remainder of this paper
further explores extensibility and scalability of the random walks
approach.
5. Extending random walks

In this section, we elaborate on the flexibility of the random
walks approach by proposing extensions that enable it to take into



Fig. 4. Network of football schedules; node shading indicates the NCAA conferences.

Table 4
Comparison of community detection algorithms on three datasets using different
validation metrics. For modularity, we also report the value for the known community
structure as a reference for each dataset. In cases where the default parameter
produces an incorrect number of communities, the correct number was specified
(indicated by Football-12) and the better of the two values used for the computation
of ranks. We report the rank of each algorithm per dataset (in parenthases) and the
algorithm with highest average rank for each metric is shown in bold.

AlgorithmnDataset Karate Risk Football Football-12 Average
rank

Modularity (Q)
True Communities 0.371 0.621 0.577
FastQ 0.381 (1) 0.625 (1) 0.577 (3) 0.535 1.67
WalkTrap 0.360 (3) 0.624 (2) 0.604 (1) 0.602 2
MCL 0.359 (4) 0.617 (4) 0.596 (4) – 4
Random walks 0.371 (2) 0.623 (3) 0.598 (2) – 2.33

Accuracy
FastQ 0.971 (2.5) 0.929 (3) 0.548 0.591 (4) 3.17
WalkTrap 0.941 (4) 0.929 (3) 0.878 0.939 (2) 3
MCL 0.971 (2.5) 0.929 (3) 0.939 (2) – 2.5
Random walks 1.000 (1) 0.976 (1) 0.939 (2) – 1.33

Rand Index
FastQ 0.941 (2.5) 0.952 (2) 0.882 0.887 (4) 2.83
WalkTrap 0.886 (4) 0.951 (3) 0.973 0.987 (2) 3
MCL 0.941 (2.5) 0.947 (4) 0.987 (2) – 2.83
Random walks 1.000 (1) 0.979 (1) 0.987 (2) – 1.33

[Hubert and Arabie] Adjusted Rand Index (ARI)
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account additional data, such as edge weights or node attributes,
and explain how this can lead to more meaningful results. We also
compare its computational complexity to the other algorithms,
identify the performance bottleneck, describe a modification that
significantly reduces complexity, and demonstrate scalability of
the new version by applying it to a real-world network of over 1
million nodes.

5.1. Metadata and weighted networks

Real-world networks are often constructed from datasets that
contain more information than just connectivity of entities. For in-
stance, a social network dataset might have demographic data or a
list of interests available for each person (Steinhaeuser and Chawla,
2008). These are examples of node attributes, because they charac-
terize nodes in the network. Other information, such as the fre-
quency or mode of communication between individuals, can be
represented as edge weights and indicate the strength of relation-
ships between individuals in the network.

Although it seems reasonable that the additional data is valu-
able for community detection, most algorithms cannot incorporate
this information to aid the discovery process. Yet simple exten-
sions to the random walks method enable it to take into account
both types of data. Edge weights can be used in a straightforward
manner: instead of selecting the next step uniformly at random
among all neighbors, simply base the probability of selection on
edge weights connecting the neighbors. This makes visiting a
strongly connected neighbor more likely, which is desirable in this
Table 3
Comparison of methods for hierarchical merging of clusters (modularity Q).

Dataset Min Max Mean

Karate 0.085 0.132 0.371
Risk 0.222 0.502 0.604
Football 0.095 0.582 0.591
context. Node attributes are not considered directly here, but they
can be used to compute meaningful edge weights. For this purpose,
we conceived a simple heterogeneous weighting function called
FastQ 0.882 (3) 0.834 (2) 0.492 (4) 0.486 3
WalkTrap 0.772 (4) 0.832 (3) 0.833 0.915 (2) 3
MCL 0.883 (2) 0.815 (4) 0.915 (2) – 2.67
Random walks 1.000 (1) 0.927 (1) 0.915 (2) – 1.33

Normalized mutual information (NMI)
FastQ 0.837 (2) 0.894 (2) 0.732 (4) 0.727 2.67
WalkTrap 0.498 (4) 0.848 (3) 0.898 0.935 (2) 3
MCL 0.836 (3) 0.834 (4) 0.935 (2) – 3
Random walks 1.000 (1) 0.955 (1) 0.935 (2) – 1.33



Table 5
Summary of community detection algorithms (complexity for real-world networks).

Algorithm Complexity References Comments/assessment

FastQ Oðnlog2nÞ Clauset et al. (2004) Computationally efficient, limited by the drawbacks of modularity

WalkTrap Oðn2 log nÞ Pons and Latapy (2006) Finds divisions similar to FastQ, but at a higher complexity
MCL Oðn3Þ van Dongen (2000) Better divisions, but matrix manipulations limit scalability
Random walks Oðn2 log nÞ This work Divisions best matching true structure, limited by merge step
Scalable random walks OðnÞ This work Finds good divisions with high efficiency, but still parameterized
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node attribute similarity (NAS). For an edge between a pair of nodes i
and j, NAS is computed as follows: for each nominal attribute an, if i
and j have the same value then increment the edge weight by one:

if equal i � an; j � anð Þ; then wa i; jð Þþ ¼ 1:

For continuous attributes, we first normalize each attribute to
(0,1) over all nodes and then take the arithmetic difference be-
tween the pairs of attribute values to obtain a similarity. More for-
mally, for each continuous attribute ac:

wa i; jð Þþ ¼ 1� ji � ac � j � acjð Þ:

The computed weights can then be used like weights provided
explicitly as described above.

5.2. Complexity and scalability

To describe the complexity of the random walks method, let the
length of a walk be denoted by l. If we assume an adjacency-list
representation of the network (so that neighbors of a node are
accessible in constant time), then the walk phase has a complexity
of OðlnÞ. Although we suggested a walk length of l ¼ n earlier, we
empirically determined that walks of only a few steps suffice,
effectively reducing the complexity to OðnÞ. But this quantity is
dominated by the agglomeration phase. The mean method we have
described has a complexity of Oðn2 log nÞ when implemented with
a heap to store the similarities. This complexity makes the applica-
tion to very large networks computationally prohibitive. Therefore,
we must devise a more efficient agglomeration technique.

Fred and Jain (2002) discuss a concept they call evidence accu-
mulation (EA) for clustering spatial data. This method combines
similarity-based clusters more efficiently. First, entries in the sim-
ilarity matrix are normalized to (0,1). Instead of finding the maxi-
mum element at each iteration, EA then takes a threshold 0 < t < 1
and assigns all elements with a similarity greater than t to the
same community. In the worst case this requires n� 1 operations,
reducing the overall complexity from Oðn2 log nÞ to OðnÞ. We
implemented the method with random walks and determined that,
for all datasets used here, it achieves performance comparable to
agglomeration by merging.

To summarize, we provide an overview of the algorithms in
Table 5. There are advantages and disadvantages of each, and the
user must carefully weigh them when choosing the best algorithm
for a given application.

5.3. Experiments on cell phone communications network

To demonstrate scalability of the modified random walks algo-
rithm, we apply it to a large real-world social network constructed
from cellular phone records (Madey et al., 2007). The data was col-
lected by a major non-American service provider during the period
from March 16 to April 15, 2007. Representing each customer as a
node and placing an edge between pairs of users who interacted
via a call or text message, we obtain a network of 1,341,960 nodes.
In addition to improved scalability, we also take advantage of node
attribute similarity by weighting the network based on demo-
graphic information (age and gender) of the customers. We ran
the modified randoms walk method on this network using a
threshold of t ¼ 0:1, although we observed that the efficiency
and resulting structure were not sensitive to variations in
threshold.

The most significant result of this experiment is the execution
time as it took just under 40 s to complete. Prior work by Pons
and Latapy (2006) showed that many other algorithms can become
intractable for datasets one and even two orders of magnitude
smaller (104–105 nodes). The partitioning consisted of thousands
of communities with a modularity of 0.911, but as pointed out
by Fortunato and Barthélemy (2007) this value should be taken
with some caution. Unfortunately, we do not (yet) have labels indi-
cating true communities in the network and are therefore unable
to evaluate the practical significance of the structure, but direct
marketing strategies based on these communities are under
consideration.
6. Conclusion

Here we have addressed two closely related problems: commu-
nity detection in complex networks and validation of community
structure. First, we showed that divisions with maximum modular-
ity do not necessarily correspond to true community structure. We
then identified alternate metrics from clustering literature and
evaluated their utility in this context. Based on our experimental
results, we conclude that a combination of metrics should be used
to provide more robust validation of a network partition.

Concurrently we performed an empirical comparison between
three different community detection algorithms from literature
and included a fourth, simple method based on random walks.
We found that modularity maximization only performed well
when measured by modularity itself, but rather poorly in terms
of the other metrics measuring agreement with the true structure.
The random walks approach, however, performed very well in dis-
covering the community structure, prompting us to further explore
its capabilities.

Finally, we highlight the flexibility afforded by the general
framework of the random walks approach and explore variations
and extensions. We analyze the algorithm and suggest a simplifica-
tion that leads to a significant reduction in computational com-
plexity; we also show how to incorporate additional data and
improve the community detection process. We demonstrate scala-
bility of this method by applying it to a large real-world social net-
work using node attribute similarity to identify community
structure.
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