
A climate model intercomparison at the dynamics level

Karsten Steinhaeuser • Anastasios A. Tsonis

Received: 17 November 2012 / Accepted: 30 March 2013 / Published online: 7 April 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Until now, climate model intercomparison has

focused primarily on annual and global averages of various

quantities or on specific components, not on how well the

general dynamics in the models compare to each other. In

order to address how well models agree when it comes to

the dynamics they generate, we have adopted a new

approach based on climate networks. We have considered

28 pre-industrial control runs as well as 70 20th-century

forced runs from 23 climate models and have constructed

networks for the 500 hPa, surface air temperature (SAT),

sea level pressure (SLP), and precipitation fields for each

run. We then employed a widely used algorithm to derive

the community structure in these networks. Communities

separate ‘‘nodes’’ in the network sharing similar dynamics.

It has been shown that these communities, or sub-systems,

in the climate system are associated with major climate

modes and physics of the atmosphere (Tsonis AA, Swan-

son KL, Wang G, J Clim 21: 2990–3001 in 2008; Tsonis

AA, Wang G, Swanson KL, Rodrigues F, da Fontura Costa

L, Clim Dyn, 37: 933–940 in 2011; Steinhaeuser K, Gan-

guly AR, Chawla NV, Clim Dyn 39: 889–895 in 2012).

Once the community structure for all runs is derived, we

use a pattern matching statistic to obtain a measure of how

well any two models agree with each other. We find that,

with the possible exception of the 500 hPa field, consis-

tency for the SAT, SLP, and precipitation fields is ques-

tionable. More importantly, none of the models comes

close to the community structure of the actual observations

(reality). This is a significant finding especially for the

temperature and precipitation fields, as these are the fields

widely used to produce future projections in time and in

space.

Keywords Climate networks � Large-scale dynamics �
Climate variability � Model intercomparison � Spatial

pattern analysis

1 Introduction

Today there are more than two dozen different climate

models which are used to make climate simulations and

future climate projections. While they all share the basic

formulation based on the Navier–Stokes equations, they

differ in several aspects such as heat transport schemes,

aerosol modeling, cloud parameterization, representation

of terrestrial processes, ice sheet dynamics, oceanic

dynamics, and other processes. These models are used as

tools to understand climate variability (control runs) and to

simulate how climate change will affect the planet (forced

runs) not only at the annual/global average level but over

specific areas of the globe.

In these models the evaluation of large-scale variability

such as the North Atlantic Oscillation (NAO), the Pacific

Decadal Oscillation (PDO), the El Niño/Southern Oscilla-

tion (ENSO), and the Pacific/North American (PNA) pat-

tern is done at the component level. To evaluate how well

the models reproduce ENSO, for example, the average
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temperature of the NINO3 area (5oS to 5oN, 90oW to

150oW) is computed for all models and the corresponding

power spectra are compared to that of the actual observa-

tions (reality) (AchutaRao and Sperber 2006; Randall

2007). This component-level evaluation gives an idea of

how well a certain mode or pattern is simulated by the

models. It does not, however, give an indication of how

well the models generate the interplay of a set of modes.

The above-mentioned oscillations as well as other

modes are major atmospheric and oceanic signals in the

temperature and pressure (sea and upper levels) fields.

They are coupled, they often synchronize, and their col-

lective behavior defines the large scale variability of cli-

mate at interannual and decadal time scales (Tsonis et al.

2007; Swanson and Tsonis 2009; Wyatt et al. 2012). Thus,

if a model adequately simulates ENSO but not PDO, to

which is coupled, then the model does not adequately

simulate their interplay and thus the dynamics. We will

address the issue of comparing climate models at the

‘‘dynamics’’ level with a new approach involving climate

networks.

2 Materials and methods

A network is defined by a set of nodes and their links. In

the last 15 years, networks have found applications in

many areas of science and recently have been applied to

climate data organized as networks with impressive results

(Tsonis et al. 2006, 2007, 2008, 2011; Gozolchiani et al.

2008; Tsonis and Swanson 2008; Yamasaki et al. 2008;

Swanson and Tsonis 2009; Wang et al. 2009; Steinhaeuser

et al. 2012; Wyatt et al. 2012). The topology of the network

can reveal important and novel features of the system it

represents (Strogatz 2001; Albert and Barabasi 2002; da

Costa et al. 2007). One such feature is communities

(Newman and Girvan 2004).

Communities represent groups of densely connected

nodes with only a few connections between groups. It has

been conjectured that each community represents a low-

order subsystem and their collective behavior determines

the dynamics of the complete system (Arenas et al. 2006).

Thus, identification of these communities can offer useful

insights about dynamics. Indeed it has been shown (Tsonis

et al. 2006, 2008, 2011; Steinhaeuser et al. 2012) that cli-

mate networks are characterized by supernodes and a small

number of communities, which relate to major telecon-

nection patterns/climate modes such as the NAO, ENSO,

PNA, and PDO.

We start by considering 500 hPa, SAT, SLP, and pre-

cipitation fields generated in 28 pre-industrial control runs

from 23 climate models (see supplementary material Table

S1 for a list of model runs availability). All fields used here

are arranged on a grid with a resolution of 5o latitude 9 5o

longitude. This results in 72 points in the east–west

direction and 35 points in the north–south direction (leav-

ing out the North and South poles, see supplementary

material for details) for a total of n = 2,520 points. These

2,520 points are assumed to be the nodes of the network.

For each grid point monthly values for the 50-year

period from 1950 to 1999 were considered. This period is

the common period between all runs and observations.

From the monthly values we produced anomaly values

(actual value minus the climatological average for each

month) and removed any trend (see supplementary material

for details). Thus, for each grid point we have a time series

of 600 anomaly values.

In order to define the links between the nodes, the cor-

relation coefficient at lag zero (r) between the time series

of all possible pairs of nodes [n(n-1)/2 = 3,173,940 pairs]

is estimated. If between a pair |r| C 0.5 then this pair is

connected (see more on this issue in supplementary mate-

rial). Once a network is constructed we find its communi-

ties. We have employed a widely used algorithm to achieve

this (Clauset et al. 2004; see supplementary material for

description). Then we calculated a similarity measure,

namely the Adjusted Rand Index (ARI; see supplementary

material for definition) between the community structures

of a run and the community structure of every other run and

produced the similarity matrix shown in Fig. 1. The first

row gives the ARI between run 1 and runs 1–28 and the last

row the ARI between run 28 and runs 1–28 (see supple-

mentary material Table S2 for correspondence between

numbers and model runs). The ARI between a run with

itself is equal to one (red diagonal).

3 Results

A simple visual inspection of Fig. 1 indicates that, with the

exception of the 500 hPa field (top left panel) where there

is good agreement between all models (owing to the strong

division between barotropic tropics and baroclinic extra-

tropics), the models are in significant disagreement when it

comes to their SLP (top right), SAT (bottom left), and

precipitation (bottom right) community structure. Table 1

(second column) gives the average ARI for the four fields.

While the average ARI for the 500 hPa field is high, for the

remaining fields it drops by a factor of two. This reflects

the fact that the complexity of community structure (as

indicated by the number of communities) increases from

500 hPa to SLP to SAT and to precipitation, a fact that has

been observed in previous studies (Tsonis et al. 2008;

Steinhaeuser et al. 2012). Another interesting observation

is that the models may agree on one field but not on

another. In other words, a set of models may delineate the

1666 K. Steinhaeuser, A. A. Tsonis

123



community structure of a field relatively well but not that

of another field.

We then considered 70 20-century forced runs from the

same 23 models and repeated the analysis (see supple-

mentary material Tables S3 and S4 for a list of model run

availability and for the correspondence between numbers

and model runs). These runs attempt to reproduce the

observed climate of the twentieth century by considering

the forcing of CO2 and of aerosols. Here we also include

the National Center for Environmental Prediction/National

Fig. 1 We considered 28 model

runs from 23 different climate

models. For each run we

considered four fields: a the

500 hPa field, b the Sea Level

Pressure (SLP) field, c the

surface air temperature (SAT),

and d the precipitation field. For

each run and each field we

constructed the network and

delineated its communities. We

then estimated the Adjusted

Rand Index (ARI) between a

model run and all other

available model runs The top

left panel corresponds to the

500 hPa field, the top right to

the SLP field, the bottom left to

the SAT field, and the bottom

right to the precipitation field.

The top row is the comparison

of run 1 with all other runs and

the bottom row is the

comparison of run 28 with all

other runs. (Table S2 in the

supplementary material

provides the correspondence

between numbers and model

runs). The ARI between a run

with itself is equal to one (red

diagonal). See text for

discussion of the results

Table 1 Average Adjusted Rand Index (ARI) for the pre-industrial control runs and for the forced 20-century runs; standard deviation and range

are also shown for comparison

Pre-industrial control runs 20-century forced runs NCEP

500 hPa 0.84 d = 0.072

(0.65,0.98)

0.84 d = 0.060

(0.67,0.99)

0.86 (d = 0.054)

(0.95, ECHAM5 run 1)

PSL 0.43 d = 0.18

(0.13,0.86)

0.41 d = 0.14

(0.13,0.81)

0.43 (d = 0.17)

(0.68, GISS E-R run 2)

SAT 0.43 d = 0.13

(0.18,0.96)

0.43 d = 0.12

(0.17,0.82)

0.47 (d = 0.11)

(0.65, MIROC HiRes run 1)

Precipitation 0.40 d = 0.083

(0.20,0.64)

0.39 d = 0.083

(0.22,0.67)

0.33 (d = 0.068)

(0.46 MRI_CGCM2_3_2A run)

For multiple runs from the same model we first calculated the model average and then the average of all models. In the fourth column the average

ARI between the models and reality (NCEP) is given. In the parenthesis in the same column the model with the best agreement with NCEP is

indicated
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Center for Atmospheric Research (NCEP/NCAR) Reanal-

ysis 1 data set (Kistler et al. 2001) as a proxy for reality,

assigned the number 71 (henceforth called NCEP for

brevity).

The same picture emerges here as well (Fig. 2). Most

models do well in simulating the features of the upper

atmospheric flow, but not well in simulating the SLP, SAT, or

precipitation fields. Note that, as in Fig. 1, different runs from

the same model have a high ARI between them (which is

rather expected; square areas of high ARI along the diagonal),

but it is more visible here because now there is more runs

available for the same models. Remarkably, the average ARI

values (third column in Table 1) are basically identical to

those for the pre-industrial controls. The fact that the com-

munity structure in forced and control simulations turns out to

be, on average, very similar would then indicate that the only

effect of forcing is to introduce a linear trend. Since the

community approach is nonlinear, if the effect of forcing were

nonlinear then removal of a linear trend would still include

nonlinear effects, which will result in different community

structures from those of the control runs. Therefore, we

conjecture that the effect of forcing in the models is to ‘‘lin-

earize’’ climate, which is highly questionable.

Also interesting is the fact that these values remain more

or less the same when we calculate the average ARI

between NCEP and all runs (fourth column in Table 1).

The ARI between model runs and NCEP is shown on the

last row and last column in Fig. 2, separated from the

model runs by a thin black line. We note that, once again

with the exception of the 500 hPa field, not only do the

models not agree well with each other, but they do not

agree with reality. Thus, our results indicate that the

models are not capable to simulate the spatial structure of

the temperature, sea level pressure, and precipitation field

in a reliable and consistent way. This is an issue especially

for SAT and precipitation, as those are the fields that are

predicted to get projections of regional temperature and

precipitation changes under forced scenarios. Even if the

models manage to agree on global averages, they surely do

not agree on regional changes.

Fig. 2 Same as Fig. 1 but for

70 20-centuty forced runs from

the same 23 models. Here

NCEP (reality) is also included

as number 71 (last row/column)

separated from the runs by a

thin black line (see Table S4 for

correspondence between

numbers and model runs).

Qualitatively and quantitatively

the results are very similar to

those in Fig. 3 (see also

Table 1)
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To further ascertain the statistical significance of the

measure of similarity between communities, we performed

a Monte Carlo simulation wherein random partitions with

the same number and size of communities was generated

and the ARI re-computed; this experiment was repeated

1,000 times for each combination of runs (i.e., each cell in

the similarity matrix shown in Fig. 1). The ARI of these

random partitions was consistently close to zero, so we can

be confident that the models do not produce random

community structure. This is encouraging; however, the

models are inconsistent and the agreement between them

(except for the 500 hPa field) is not great.

4 Discussion

We don’t mean to suggest that climate models do not have

value. The parentheses in the fourth column in Table 1

give the models that agree most with reality (NCEP) for the

four different fields. While no model or models emerge as

superior, the ECHAM5 model agrees with NCEP 500 hPa

to a high degree (ARI = 0.95), and the GISS and MIROC

HiRes models have reasonable representation of the PSL

(ARI = 0.68) and SAT (ARI = 0.65) fields, respectively.

The MRI_CGCM does the best job for precipitation

(ARI = 0.46).

Another encouraging result is shown in Fig. 3, which is

similar to Fig. 1 but for 50-year sub-intervals of a 500-year

pre-industrial control run (ECHAM5). The results indicate

that, with the exception of the PSL field, the community

structure is consistent throughout the 500-year period with

higher and more uniform Adjusted Rand Indices than those

in Fig. 1. This in turn suggests that models may not have a

serious problem handling long-term simulations. Maybe

the time has come to correct this modeling Babel and to

seek a consensus climate model by developing methods

Fig. 3 This figure is similar to Fig. 1 but for 50-year sub-intervals of

a 500-year control run (ECHAM5). The results indicate that the

community structure is consistent throughout the 500-year period

with higher and more uniform (with the exception of the PSL field)

Adjusted Rand Indices than those in Fig. 1
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which will combine ingredients from several models or a

supermodel made up of a network of different models. For

example, it has been shown that coupling imperfect copies

of a simple dynamical system representing climate, which

are assumed to be the truth, produces improved forecasts

(Mirchev et al. 2012). Such an approach might draw on

methodologies and experience from weather forecasting,

where ensemble prediction methods have been developed

and extensively used in operation for nearly two decades

(Houtekamer and Derome 1995; Gneiting and Raftery

2005).
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