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Abstract A systematic characterization of multivariate

dependence at multiple spatio-temporal scales is critical to

understanding climate system dynamics and improving pre-

dictive ability from models and data. However, dependence

structures in climate are complex due to nonlinear dynamical

generating processes, long-range spatial and long-memory

temporal relationships, as well as low-frequency variability.

Here we utilize complex networks to explore dependence in

climate data. Specifically, networks constructed from reanal-

ysis-based atmospheric variables over oceans and partitioned

with community detection methods demonstrate the potential

to capture regional and global dependence structures within

and among climate variables. Proximity-based dependence as

well as long-range spatial relationships are examined along

with their evolution over time, yielding new insights on ocean

meteorology. The tools are implicitly validated by confirming

conceptual understanding about aggregate correlations and

teleconnections. Our results also suggest a close similarity of

observed dependence patterns in relative humidity and hori-

zontal wind speed over oceans. In addition, updraft velocity,

which relates to convective activity over the oceans, exhibits

short spatiotemporal decorrelation scales but long-range

dependence over time. The multivariate and multi-scale

dependence patterns broadly persist over multiple time win-

dows. Our findings motivate further investigations of depen-

dence structures among observations, reanalysis and model-

simulated data to enhance process understanding, assess model

reliability and improve regional climate predictions.

Keywords Complex networks � Correlation �
Teleconnections � Reanalysis data � Ocean meteorology

1 Introduction

Developing a better understanding of the climate system

and producing enhanced predictive insights are often con-

founded by complex dependence structures among climate

variables including long-range spatial dependence, long-

memory temporal processes, interactions at multiple scales,

and nonlinearity of the underlying processes and relation-

ships (Goddard et al. 2001; Hoerling et al. 2010). Complex

networks have been motivated in climate to understand

attributes of large-scale dynamics, for example, correla-

tions within variables as a function of geographical prox-

imity and teleconnections (Gozolchiani et al. 2008;

Steinhaeuser et al. 2010b; Tsonis et al. 2006), inherent

predictability of climate over oceans (Steinhaeuser et al.

2010a, 2010; Tsonis et al. 2006) and relations among

ocean-based oscillators (Gozolchiani et al. 2008; Tsonis

et al. 2006; Tsonis and Swanson 2008; Yamasaki et al.

Electronic supplementary material The online version of this
article (doi:10.1007/s00382-011-1135-9) contains supplementary
material, which is available to authorized users.

K. Steinhaeuser � A. R. Ganguly (&)

Geographic Information Science and Technology Group,

Computational Sciences and Engineering Division,

Oak Ridge National Laboratory, 1 Bethel Valley Rd,

PO Box 2008, MS-6017, Oak Ridge, TN 37831, USA

e-mail: gangulyar@ornl.gov

K. Steinhaeuser � N. V. Chawla

Department of Computer Science and Engineering

and Interdisciplinary Center for Network Science

and Applications, University of Notre Dame,

384 Fitzpatrick Hall, Notre Dame, IN 46556, USA

A. R. Ganguly

Department of Civil and Environmental Engineering,

University of Tennessee at Knoxville, 223 Perkins Hall,

Knoxville, TN 37996, USA

123

Clim Dyn (2012) 39:889–895

DOI 10.1007/s00382-011-1135-9

http://dx.doi.org/10.1007/s00382-011-1135-9


2008). While the potential of these tools has been dem-

onstrated and exploited across complex systems in nature

and society (Barabási and Bonabeau 2003; Watts and

Strogatz 1998) the applications to climate are still emerg-

ing (Donges et al. 2009a, b). Availability of massive

datasets, whether observations, reanalysis or climate model

simulations, has led to new challenges and opportunities.

The analysis and insights presented here illustrate the value

of climate networks, that is, complex networks constructed

from climate data.

We describe an adaptation of climate networks con-

structed from reanalysis-based atmospheric variables

(Kalnay et al. 1996) over the oceans, with a focus on

identifying dependence structures and their temporal evo-

lutions over varying resolutions in space, within and among

multiple variables. The overall network topology (Donges

et al. 2009b; Tsonis and Roebber 2004; Tsonis et al. 2006)

expresses global properties, while employing community

detection to partition the networks (Mucha et al. 2010;

Newman 2003; Pons and Latapy 2006; Steinhaeuser and

Chawla 2010) (Electronic Supplementary Material [ESM])

reveals additional structure at regional to local scales. Our

findings re-confirm known physics-based associations, thus

implicitly affirming the validity of our approach, but also

suggest new insights in ocean meteorology including the

possibility of long-range dependence in atmospheric con-

vective activity. Examining the network dynamics suggests

that patterns and dependencies are relatively stable over

time, further increasing confidence in our observations.

We develop multivariate and multiscale dependence

structures in climate networks from seven variables

(Materials and Methods), whereas prior work has mostly

focused on univariate analysis or comparisons among a few

variables. The spatial proximity between vertices is not

explicitly used during network construction. However, both

proximity-based correlations and long-range spatial

dependence, if any, are expected to emerge from the net-

work structure. The frequency of edge lengths is plotted as

a function of spatial distance between the vertices. Climate

networks exhibiting small-world properties would suggest

a balance between both proximity-based and long-range

dependence. A community detection algorithm (Pons and

Latapy 2006) is used to partition each network into clusters

or regions (see ESM). The important difference from

standard clustering algorithms is the use of network dis-

tances based on the constructed climate networks, rather

than the use of Euclidean or other geography-based dis-

tances. The formation of spatial clusters suggests the

emergence of patterns based on spatial proximity, whereas

clusters that are geographically separated suggest telecon-

nections. Network and cluster properties based on all

available data capture the time-averaged dependence patterns.

The temporal evolution of global and regional dependence

structures is examined by comparing network and cluster

properties over multiple time windows. Evolution in the

properties of global climate networks is measured through

changes in the edge frequency distribution over time as well as

in terms of the ability to predict this distribution for unseen

data; evolution of the clusters is quantified through the

Adjusted Rand Index (ARI) (Steinhaeuser and Chawla 2010),

which is also used to quantify the degree of closeness of

structures among multiple variables.

2 Materials and methods

The climate networks developed here rely on the NCEP/

NCAR Reanalysis Project (Kalnay et al. 1996), which

reconstructed 60 years (1948–2007) of climate data by

assimilating remote and in situ sensor measurements across

the globe with a physically-based meteorological model. In

addition to ensuring internal consistency among variables,

reanalysis projects reconstruct variables that are not

directly observed. Interpretation of the results requires an

understanding of the reconstructions. For the dataset con-

sidered here (Kalnay et al. 1996), temperature observations

are directly assimilated and hence remain close to obser-

vations while precipitable water is derived and hence

resemble model outputs more than observations. Mea-

surements are rare or non-existent for updraft or vertical

velocities, even though they are important indicators of

convective activity (Zelinka and Hartmann 2009). The

credibility of reconstructed data relate to both the quality of

observations and the physics embedded within models.

Thus, insights gained from reanalysis datasets may be

compared with observations and tested on climate model

simulations. The latter is important for the possible use of

the insights found in this study in the context of longer-

term climate projections.

Our investigation focuses on the nature of the informa-

tion content and dependence structures among oceanic

variables at the water surface or in the atmosphere. Thus,

based on the stated quality and relevance of the variables

available from the NCEP/NCAR reanalysis (Kalnay et al.

1996), we selected the following seven for our analysis: sea

surface temperature (SST; water temperature at the sur-

face), sea level pressure (SLP; air pressure at sea level),

geopotential height (GH; elevation of the 500 mbar pres-

sure level above the surface), precipitable water (PW;

vertically integrated water column over the entire atmo-

spheric column), relative humidity (RH; saturation of

humidity above the surface), horizontal wind speed (HWS;

measured in the plane near the surface), and vertical wind

speed (VWS; measured in the atmospheric column).

Since seasonality tends to dominate the climate signal,

we consider monthly anomaly series for each variable: at
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each grid point, we calculate for every month (i.e., sepa-

rately for all Januaries, Februaries, etc.) the long-term

mean and standard deviation. Each data point is then nor-

malized by subtracting the mean and dividing by the

standard deviation of the corresponding month. This nor-

malization significantly reduces temporal autocorrelation

in the time series (Steinbach et al. 2003).

To construct the climate networks, each grid cell is

represented by a vertex and weighted edges are created

between all pairs of vertices based on the statistical rela-

tionship between them (Tsonis and Roebber 2004). The

similarity measure used is the cross-correlation between the

monthly anomaly series. Because inverse relationships are

equally relevant in the present application, we set the edge

weight to the absolute value of the correlation coefficient.

While nonlinear relationships known to exist in climate

might suggest the use of a nonlinear correlation measure,

other researchers examined this question and concluded

that, ‘‘the observed similarity of Pearson correlation and

mutual information networks can be considered statistically

significant’’ (Donges et al. 2009a). Thus it seems reasonable

to use the simplest possible measure, namely linear (Pear-

son) correlation. Finally, significance-based pruning is

applied to the networks. Specifically, two vertices are

considered connected only if the p-value of the corre-

sponding correlation is less than 1e-10. This may seem like

a stringent requirement but a large number of edges satisfy

this criterion and are therefore retained in the networks.

The edge lengths were computed as the great-circle

distance between vertices (centers of the corresponding

grid cells). For each variable, a histogram using 40 equal-

width bins of the edges was computed; for clarity, only

lines connecting the mid-points of each bin are shown in

the profile plots (Figs. 1a, 2). The maximum length of

20,000 km derives from the fact that this is approximately

equal to half of the earth’s circumference.

The shape of the profiles (Fig. 1b) is characterized by

two properties: the proximity-based spatial autocorrelation

is captured by the ‘‘peak height’’, defined as the maximum

bin count of the profile; and the long-range spatial depen-

dence is quantified by the ‘‘tail thickness’’, calculated as

the area under the profile plot for distances greater than

10,000 km. We selected this threshold based on visual

inspection of the profiles to describe the tail but avoid

capturing any of the proximity-based autocorrelation.

While it is possible to conceive of more principled

approaches to threshold selection, empirical evidence

suggests that our results and interpretation are not sensitive

to the exact threshold chosen.

3 Results

Figure 1a shows the time-averaged dependence patterns at

global and regional scales in form of the frequency distri-

bution of edge lengths in the network (called distance

profile) constructed from each variable. Large values at

short distances (a ‘‘peak’’ or a ‘‘plateau’’) indicate the

relative dominance of proximity-based spatial correlations.

However, non-decaying values at longer distances (a ‘‘fat

tail’’) suggest possible dominance of long-range spatial

dependence or teleconnections. The dip in frequencies at

very short distances (near the y-axis) is expected: this is an

artifact of the data being arranged on a spherical grid,

resulting in increasing spacing when moving from the

poles towards the equator and thus having minimum

Fig. 1 Left Panel: Frequency distributions of the edge lengths in

climate networks (distance profiles). Presence of short-distance edges

can be interpreted as proximity-based spatial autocorrelation, while

long-distance edges may be evidence of long-range spatial depen-

dencies or teleconnections; see inset for an idealized interpretation.

Right Panel. Visual comparison of the spatial correlation structure in

different climate variables based on similarity of the corresponding

profiles. The x-axis shows a characteristic of the ‘‘peak height’’ and

the y-axis a characteristic of the ‘‘tail thickness’’ (Materials and

Methods), both plotted on a logarithmic scale
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distances greater than the first several histogram bins.

Three categories emerge based on the observed profiles:

both a high peak and a fat tail—sea surface temperature

(SST), sea level pressure (SLP), geopotential height (GH);

a moderate peak but no tail—precipitable water (PW),

relative humidity (RH), horizontal wind speed (HWS); and

near-uniform distribution with a fat tail but little or no peak

across the full range—vertical wind speed (VWS). Prox-

imity-based and long-range spatial dependence in SST,

SLP and GH follow from basic meteorology (Ahrens 2008)

and are well known in climate science; indeed, SST and/or

SLP are frequently used to define indices of oceanic

oscillators (Alexander et al. 2002; Diaz et al. 2001;

Steinbach et al. 2003; Tsonis et al. 2008) and GH is closely

correlated with both SST and SLP (Trenberth and Hurrell

1994). Spatial correlation scales of the hydrologic variables

are expected to be shorter and there are no known tele-

connections, which agrees with the profiles of PW and RH,

as well as the similarity between them. Horizontal wind

speeds (HWS) are expected to be correlated at relatively

short spatial scales but no known teleconnections exists.

Vertical wind speeds (VWS) or updraft velocities are an

indicator of convective activity, which in turn are known to

have very short spatial (and temporal) decorrelation scales

(Emanuel 1992). The proximity-based spatial correlation

is accordingly rather negligible. However, a fat tail is

observed, suggesting the possibility of teleconnections in

atmospheric convection patterns over the oceans. This is a

surprising observation, which may be a novel insight in

climate science or perhaps indicative of a spurious

Fig. 2 5th and 95th percentile bounds of the distance profiles,

computed separately for each bin over a 40-year baseline period

(1952–1991, shaded) and the same bounds for a 16-year validation

period (1992–2007, dashed lines). The fact that the colored lines
generally fall within the shaded boundaries suggests that the profiles

are relatively stable over time
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correlation structure from the data. Figure 1b summarizes

this categorization with two characteristics, which are

assumed to capture the spatial dependence patterns: prox-

imity-based dependence quantified by the ‘‘peak height’’

and teleconnections or long-range spatial dependence

quantified by the ‘‘tail thickness’’ (Materials and Methods).

The outlying nature of VWS compared to the other vari-

ables, which is a consequence of the very short decorre-

lation scales, becomes immediately apparent. The

closeness of RH and HWS dependence behavior is obvious

from both panels. While a relation of wind with SST has

been observed (O’Neill et al. 2003), this closeness may be

of interest for future research.

Figure 2 shows temporal evolution of the dependence

structures. First, we construct separate networks for five-

year moving windows and calculate their histograms, for a

total of 56 profiles per variable. As a baseline, profiles are

calculated using the first 40 years of data (1952–1991) and

their 5th and 95th percentile bounds are computed. The fact

that these bounds are fairly tight suggests that, despite

some variability, the dependence structures are fairly stable

over time. Second, we use the remaining 16 years

(1992–2007) for validation to determine if the bounds of

the profiles calculated from the first 40 years have any

predictive power for the next 16 years. Indeed, we observe

that the validation profiles by and large fall within the

bounds, thus lending further credence to temporal stability.

A linear regression (von Storch and Zwiers 2002) on each

frequency (i.e., histogram bin) shows how the dependence

structure develops over time (see ESM: Figures S1 & S2).

Figure 3 shows the multivariate dependence among the

clusters produced by partitioning each of the individual

networks (see ESM). Cluster similarities are quantified

through the Adjusted Rand Index (ARI, see ESM) and the

similarity matrix is visualized with a color scheme. The

categorization based on the regional or cluster-based

dependence is similar to the one based on distance profiles.

One category is formed by SST, SLP and GH; a second by

PW, RH, and HWS; VWS forms a completely separate

category. VWS appears unique compared to the others

because of the very short decorrelation scales in space,

which is captured through the ARI when compared to the

other clusters. As previously noted, the relationship

between SST, SLP and GH is well established (Ahrens

2008; Alexander et al. 2002; Diaz et al. 2001; Steinbach

et al. 2003; Tsonis et al. 2008). The regional clusters

derived from SST and PW show a degree of overlap which

is a likely consequence of the Clausius-Clapeyron relation

that relates temperature to the water vapor in an atmo-

spheric column (Emanuel 1992; O’Gorman and Schneider

2009). The RH is related to both SST and PW. The relation

of HWS to SST (O’Neill et al. 2003) has been suggested in

the literature. The close relation of RH and HWS, which is

seen from the clusters as well as from the dependence

profiles, bears further investigation.

Figure 4 depicts the oceanic clusters as well as their

evolution over time for two 20-year windows, one at the

beginning (1948–1967) and another at the end (1988–2007)

of reanalysis data availability. We show clusters for several

variables but focus our discussion on two in particular. As

may be expected, the SST clusters show both proximity-

based spatial correlations and teleconnections, many of

which are known to meteorologists (Ahrens 2008; Alex-

ander et al. 2002; Diaz et al. 2001; Kumar et al. 2006;

Yamasaki et al. 2008), as well as persistence over time.

However, the VWS clusters are relatively short-lived with

very short correlation scales in space. In this context, the

apparent teleconnections in VWS and their persistence

over time are rather surprising. The possibility of long-

range spatial dependence in atmospheric convective

activity and its relationship to other physical processes

(e.g., tropical cyclone activity) should be explored in more

detail. The ARI is also computed over multiple moving

time-windows to quantify the stability of the clusters for

each individual variable (see ESM: Figure S3). Stability

over time follows a somewhat intuitive pattern: variables

that are generally thought of as participating in larger-

scale, long term processes are the most stable, whereas

variables that participate in highly localized phenomena are

more volatile. Somewhat surprisingly, however, PW

exhibits higher stability over time than SST. This may be

explained by the relatively higher spatial autocorrelation

in PW. In addition, we observe statistically significant

Fig. 3 Visual comparison of the clusterings for different climate

variables, calculated as the Adjusted Rand Index (ARI) between their

cluster assignments
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downward trends for both PW and SST, suggesting a de-

stabilization of the network over time; a corresponding

upward trend for SLP, suggesting a stabilization of the net-

work; and no significant trends for any of the other variables.

4 Discussion

A recent news article (Schiermeier 2010) claimed that the

sad truth of climate science is that model predictions are

less reliable at scales and for variables which are most

crucial. Advances in climate science or modeling may not

keep pace with the urgency of stakeholder requirements in

regional climate or hydrologic predictions. However, rel-

atively well-predicted variables like temperature or

humidity may have information content for the not so-well

predicted but potentially more crucial variables like pre-

cipitation. Thus, SST and SLP patterns determine oceanic

oscillators which impact regional precipitation over oceans

and land (Ahrens 2008; Steinbach et al. 2003), while

temperature and humidity profiles in an atmospheric col-

umn impacts precipitation extremes over land (O’Gorman

and Schneider 2009; Sugiyama et al. 2010). In addition,

ancillary variables like updraft velocity may be able to

resolve the differences among multiple climate models

(O’Gorman and Schneider 2009; Sugiyama et al. 2010).

Complex networks may be able to extract the information

content in multiple climate variables relevant to a variable

of interest, thus leading to better understanding of climate

science and offering the possibility of complementing

physics-based climate models for improved predictions of

the more crucial variables.
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Fig. 4 Network clusters

obtained by community

detection. Spatial proximity was

not used in constructing the

networks but some patterns

clearly emerge, e.g., spatially

coherent clusters for SLP

contrasted with relatively

scattered clusters for VWS.

Networks were constructed

from 20-year windows at the

beginning (1948–1967) and end

(1988–2007) of data availability

to illustrate relative stability of

these patterns over time
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