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Abstract—Automatic identification of changes in land cover
from remote sensing data is a critical aspect of monitoring
the planet’s ecosystems. We use time series segmentation
methodology for detecting land cover changes from Moderate
Resolution Imaging Spectroradiometer-based vegetation index.
In this paper, we investigate segmentation scores based on
difference between models and propose two approaches for
normalizing the difference based score. The first approach uses
permutation testing to assign a p-value to model difference. The
second approach builds on bootstrapping methodology used
in statistics which estimates the null distribution of complex
statistics whose standard errors are not analytically derivable
by generating alternative versions of the data by a resampling
strategy. More specifically, given a time series with either a
single or two segments, we propose a method to estimate the
distribution of model difference statistic for each segment. The
proposed approach allows normalizing model difference statis-
tic when complex models are being used in the segmentation
algorithm. We study the strengths and weaknesses of the two
normalizing approaches in the context of characteristics of
land cover data such as seasonality and noise using synthetic
and real data sets. We show that relative performance of
normalization approaches can vary significantly depending on
the characteristics of the data. We illustrate the utility of
these approaches for detection of deforestation in Mato Grosso
(Brazil).

I. INTRODUCTION

Quantifiable knowledge about changes occurring in land
cover and land use at a global scale is key to effective
planning for sustainable use of diminishing natural resources
such as forest cover and agricultural land. Accurate and
timely information about land cover and land use changes is
therefore of significant interest to earth and climate scientists
as well as policy and decision makers. Due to the importance
of land cover and land use change detection, it has been a
topic of active research in the remote sensing community.
The bulk of work in land cover change detection from
remote sensing data involves image comparison methods [1],
[2] which have well known limitations including need for
training data which makes them difficult to apply on a global
scale [3].

Recently, global time series data sets, such as Moderate
Resolution Imaging Spectroradiometer Enhanced Vegetation

Index (EVI), have become publicly available [4] and have
been used to identify changes in vegetation cover [3]. Time
series-based approaches look at a longer context and there-
fore can be utilized for providing fine grained information
about land cover dynamics that is necessary to quantitatively
assess the carbon impact of land cover changes [5]. Hence
there is increasing interest in time series-based approaches
to change detection in vegetation data [6], [7], [8], [9], [10],
[11], [12], [13]. Figure 1 shows illustrative examples from
four different locations that have land cover changes. The
focus of this paper is on time series segmentation algorithms
that can identify such changes as well as the time of change.
Moreover, in this paper we focus on time series with either
no change or a single change and leave the problem of
detecting multiple changes as future research.
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Figure 1. Illustrative examples of EVI time series corresponding to
locations where a land cover change occurred.

Segmentation of a time series attempts to divide it into
homogeneous subsequences, such that each of these seg-
ments are different from each other. A typical segmentation
framework involves selecting a model that is used to rep-
resent the segment. The algorithm then looks at candidate
split points using a search strategy that can be top-down or
bottom-up [14]. At each candidate, models are constructed
for both segments, and the segmentation score, a statistic



that indicates the utility of segmenting at that time step is
computed. If a given location has not undergone a change,
then we expect the models to look very similar and the
segmentation algorithm should give the time series a low
score. On the other hand, if a land cover change (such as in
examples shown in Figure 1) has occurred, the segmentation
algorithm should give the time series a high score.

Segmentation algorithms often use the difference between
the models of the two segments as a segmentation score.
As an example, if the model selected is parametric (such
as piecewise constant, or piecewise linear model), then the
parameters of the model fitted on two segments can be com-
pared (to compare two segments fitted with a linear model
the difference between the slopes is used as a statistic). The
intuition is that when this statistic (i.e. difference between
slopes) has a high value then the two segments are distinct
enough to segment the time series.

The same magnitude of the model difference statistic can
have different significance for two time series with different
characteristics. In the context of land cover monitoring, high
inter-annual variability and noise seen in farms, grasslands
and tropical areas can cause model difference to be high even
in the absence of a land cover change. Therefore, using the
magnitude of model difference as segmentation score can
lead to large number of false alarms in regions where farms
and grasslands are the dominant vegetation. For some of
the commonly used models, such as piecewise constant and
linear models, the statistic used, such as the difference in
piecewise constant approximations and slopes of segments,
has a known statistical distribution under the null model and
therefore the standard error of the statistic can be analytically
computed. This allows using the t-statistic for normalization
of model difference statistics such as the difference in mean
[15] and the difference in slopes [16].

For many domains, including land cover change detection,
piecewise linear or constant approximations are inadequate
to capture the underlying model [17]. The plots in Figure
1 indicate the following characteristic pattern present in
vegetation model changes. There is a recurring annual model
that repeats with some variations every year for several
consecutive years. When a land cover change occurs, the
annual vegetation model changes at the change time (marked
as red vertical line). In this case, when a seasonal model
has to be used, the standard error for the model difference
statistic is not known analytically as in the case of a
piecewise constant model [15] or a linear model [16], and
therefore t-statistic based normalization cannot be used.

A. Our Contributions

• In this paper, we investigate segmentation scores based
on the difference between models and propose two
approaches for normalizing the difference based score.
The first approach is adapted from the Pete algorithm
proposed in [18] and uses permutation testing to assign

a p-value to model difference. More specifically, we
generate random permutations of time series, com-
pute the maximum model difference for each random
permutation, and use this distribution to assign an
empirical p-value to the model difference observed in
the original time series. The second approach builds on
the bootstrapping methodology used in statistics which
estimates the null distribution of complex statistics
whose standard errors are not analytically derivable
by generating alternative versions of the data by a
resampling strategy. More specifically, given a time
series with either a single or two segments, we propose
a method to estimate the distribution of the model
difference statistic for each segment. We show that
this distribution can be used as a null distribution of
model differences due to intra-segment variations, and
the observed model difference statistic between the two
segments is normalized with respect to this distribution.
The proposed approach thus allows normalizing the
model difference statistic when complex models other
than piecewise constant and piecewise linear model are
being used in the segmentation algorithm.

• We study the strengths and weaknesses of the two
normalizing approaches in the context of characteris-
tics of land cover data such as seasonality and noise
using synthetic and real data sets. We show that the
relative performance of normalization approaches can
vary significantly depending on the characteristics of
the data.

• We illustrate the utility of these approaches for detec-
tion of deforestation in Mato Grosso (Brazil).

II. EARTH SCIENCE DATA

Global remote sensing data sets are available from a
variety of instruments at different spatial resolutions as a
sequence of global snapshots of measurement values. In
principle, the segmentation algorithms discussed can be ap-
plied to any geospatial dataset that features regular, repeated
observations, consistent image registration and well-defined
composite indicators of vegetation. In this study, we used
the Enhanced Vegetation Index (EVI), a data product based
on measurements taken by the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor onboard NASA’s Terra
satellite [4]. EVI essentially measures the “greenness” signal
(area-averaged canopy photosynthetic capacity) as a proxy
for the amount of vegetation at a particular location. MODIS
algorithms have been used to generate the EVI index at
16-day intervals at 250-meter and 1 km spatial resolution
from February 2000 to the present. We process sequences
of global snapshots of these indices to construct a time series
for each pixel on the globe. Savitzky-golay filtering used in
[19] was used with parameters for polynomial degree as 2
and window size as 7.



III. OUR APPROACH

In this section we describe the components of our seg-
mentation approach to detect land cover changes from EVI
data. A typical segmentation algorithm consists of three
components: (1) model choice, (2) search strategy and (3)
segmentation score. Table I describes the notations that are
used in this paper while discussing different algorithms.

A. Model choice

For describing a time series segment, a simpler generative
model for the data in the segment is assumed or chosen
from a given set of available choices of models [20].
When this model is fitted to the segments, it provides both
a measure for homogeneity as well as a mechanism to
compare segments.

We use a nonparametric model described in [17] for
vegetation data that accounts for the presence of seasonality
with known time period sl. It consists of a seasonal and
a natural variation component. The seasonal component is
written as A = (A1, A2, ..., Asl) and can be estimated
for time series S as mean of the observations (details in
Algorithm 1). Nonparametric models use functions of the
input time series as the model and do not approximate
the data with other functions. The difference between the
observations and the estimated nonparametric model for
the time series (i.e. the residuals) are considered the error
component.

Algorithm 1 computemodel(S, sl)
Calculates A for segment S
Require: time series segment S, season length sl
Ensure: A the model estimate for S

for k = 1 to sl do
Ak ← mean(Sk)

end for

B. Search strategy

We use a top-down search strategy that computes a
segmentation score for each time t. An EVI time series
is assigned the maximum segmentation score across all
timesteps as the change score and corresponding time t as
the change point.

C. Segmentation score

The segmentation score at t indicates the utility of divid-
ing a time series into two segments at t. In this study we
investigate the model difference-based segmentation score.
In addition, we propose two approaches to normalize the
score based on natural variations of the time series. The
details of the model difference scoring method and proposed
normalizing approaches is presented in the next section.

IV. DIFFERENT SCORING SCHEMES

Here we provide the details of different segmentation
scores we use in this study for change detection.

A. Model difference (MD)

In MD we use L1 distance between the models for
the two segments as our segmentation score. The intuition
behind this is that if a land cover change occurs, then two
segments with distinct models are present in the time series.
We use L1 distance because it captures changes in shape as
well as amplitude, but other distance functions such as L2
norm or correlation can also be used. More formally in the
MD scheme, for each candidate time step t we compute the
models Aleft and Aright for segments S1,t and St+1,l. The
change score for S at t is given as the L1-distance between
Aleft and Aright and is referred to as MDt. We assign the
maximum model difference score MDt over time t as the
change score for that time series (MDmax).

B. MD with permutation testing (MDPerm)

In this method, we adapt the strategy of the Pete al-
gorithm proposed in [18] for normalizing model difference
scores. More specifically, we create random permutations of
the data, and for each random permutation of S the high-
est model difference is computed (referred to as MDi

max

corresponding to the ith permutation of S). The p-value
assigned to the maximum model difference from actual
data (MDmax) is the fraction of MDi

maxs greater than
MDmax. If the difference in the models for the time series
is significant then it will be higher than the MDi

max and
thus the p-value will be low. On the other hand, if the
difference is insignificant compared to the differences that
can be achieved due to random chance for the time series
with similar mean and variability characteristics, some of
the MDi

maxs will exceed MDmax and it will get a higher
p-value (i.e. lower significance).

C. MD with bootstrapping (MDBoot)

Random permutation of time series disregards the sea-
sonal structure that is prominent in EVI data. In this section,
we propose a framework that can be used to generate a
distribution of inter-annual distances within a time series
segment and use it to normalize MD scores with respect to
the natural variability while retaining the seasonal structure
of time series.

1) Main intuition: Figure 2 shows two time series: the
first is a stable tropical forest that is resilient to inter-annual
fluctuations and the second is a farm that has a significantly
higher degree of inter-annual natural variations. EVI time
series in Figure 2 have 11 years of data. The model differ-
ences corresponding to the

(
11
2

)
pairs of annual segments

in the time series are computed and their histograms are
plotted adjacent to the time series. The histogram for the
forest time series has lower mean and smaller spread while



Notation Description
S a time series which is an ordered collection of real values.
sl the number of time steps in one period of the time series and is referred as season length.
St the value of time series S at time step t.
Si,j a segment i.e. the portion of time series S from time step i to j.
l the length of a segment and for Si,j is equal to j − i+ 1.
A an annual segment and is a vector of sl values.
Ak the value of kth index of A.
Sk the collection of values St of all t that belong to kth season (for example January).

Table I
A TABLE WITH DESCRIPTION OF NOTATIONS.
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Figure 2. Two different EVI time series with different degree of inter-
annual variations. The histograms show the distribution of the pairwise
inter-annual L1 distances for the adjacent EVI time series.

the histogram for farm has a higher mean and a wider
spread. Therefore significance of model difference scores
between two segments in these two different land cover
types should be assessed in context of these natural inter-
annual variations. A model difference that can belong to the
distribution of the pairwise intra-segment differences cannot
be considered significant. It is challenging to use this ap-
proach due to the small sample size of the segments available
for computing the distribution of inter-annual variability.
The EVI time series have total of 11 annual segments and
therefore the number of annual cycles in a segment will vary
between 3 and 10, which is insufficient to robustly estimate
mean and standard deviation. To overcome this challenge we
propose a bootstrapping method that can be used to estimate
the mean and standard deviation of the distribution for the
pairwise annual model differences for a segment.

2) Bootstrapping: Bootstrapping is a resampling method
that allows for estimating properties of an estimator when
sampling from an approximate distribution [21]. If the data
is independent and identically distributed, then resampling
with replacement can be used for generating alternate ver-
sions of data (that could have been observed). Traditional
bootstrapping is therefore not suitable for time series because
they lack i.i.d. property. Time series have structures such
as seasonality and temporal ordering which need to be

preserved while generating the alternate versions of data.
Here we describe our bootstrapping framework to gener-

ate resamples of annual segments in a time series segment
that can be used to compute the distribution for model
differences within a segment. The distribution of these model
differences is used to normalize the MD score. Under the
null hypothesis, i.e., stable recurring annual models with
natural inter-annual variations, Algorithm 1 is used to es-
timate the model A for segment S. To generate a resampled
value we randomly choose a value from the set of values
in S belonging to season k. This is done for each k from
1 to sl and gives us a resampled annual segment. Similarly,
another annual segment is generated. The L1 distance is
computed between the two resampled annual segments. This
is repeated N times and gives us a distribution of N model
differences. The distribution is assumed to be Gaussian and
the maximum likelihood estimates for mean and standard
deviation are computed. The specifics of the bootstrapping
algorithm is presented in Algorithm 2.

Algorithm 2 computevariability(S,N, sl)
Calculates µ and σ of Distnull for segment S using Boot-
strap
Require: time series segment S, number of bootstrap steps
N , season length sl

Ensure: Estimates of µ and σ of Distnull
for i = 1 to N do

for k = 1 to sl do
sample1ik ← randomly choose from Sk

sample2ik ← randomly choose from Sk

end for
Distnull(i)← sample1i − sample2i

end for
µ← mean(Distnull)
σ ← sd(Distnull)

3) Algorithm: In the MDBoot algorithm for each time
step t, the time series is partitioned into two segments S1,t

and St+1,l. The models Aleft and Aright for the left and
right segments are computed and their model difference
is calculated. The intra-segment annual variability is com-
puted using the bootstrapping framework discussed. The



significance of the model difference is calculated using the
distribution of inter-annual variations from the left and right
segments. The distributions are assumed to be Gaussian,
and the score at time t is computed as the z-statistic of the
model difference and the estimates for mean and standard
deviation from left and right segments. This gives two z-
scores corresponding to the left and right segments, and the
maximum of the two scores is used as the segmentation score
at time step t. Note that if one of the segments is less than
3*sl in length, then no variability statistics for that segment
is computed and the score for that segment is considered to
be 0. The values of t range from sl+1 to l-sl, because model
computation requires at least one annual segment. Thus no
changes occurring in the first and last years can be detected.

Algorithm 3 MDBoot(S,N, sl)
Calculates score and cpt for time series S using MDBoot

Require: time series S, number of bootstrap steps N ,
season length sl

Ensure: score and cpt for time series S
l← length(S)
for t = sl + 1 to l − sl do
Aleft ← computemodel(S1,t, sl)
Aright ← computemodel(St+1,l, sl)
modeldiff ← Aleft −Aright
if t ≥ 3sl then
µleft, σleft ← computevariability(S1,t, N, sl)

scoret,left ← modeldiff−µleft

σleft

end if
if t ≤ l − 3sl then
µrgt, σrgt ← computevariability(St+1,l, N, sl)

scoret,right ← modeldiff−µrgt

σrgt

end if
scoret ← max(scoret,left, scoret,right)

end for
score← maxt(score)
cpt← argmaxt(score)

V. EXPERIMENTAL EVALUATION

We generate synthetic time series with characteristics
similar to those observed in EVI signals of some regions and
use them to understand the strengths and weaknesses of the
scoring methods discussed earlier. In particular, we present
experiments to illustrate the impact of noise and seasonality
on the different scoring schemes we study. We also evaluate
the different segmentation scores on a validation data set
from Mato Grosso in Brazil.

A. Evaluation Methodology

The segmentation algorithms assign a score to each
location, and the locations are ranked according to the
descending order of their segmentation score. The algorithm

flags the top n ranked locations as change events and the
lower ranked locations as unchanged. By computing the
intersection with the validation data, we find the number of
true positives (TPn), false positives (FPn), true negatives
(TNn) and false negatives (FNn). Our evaluation of the
performance of the change detection algorithms is based on
computation of receiver operating characteristic (ROC) curve
using the TPR and FPR [22] and given by:

TruePositiveRate, TPRn =
TPn

TPn + FNn

FalsePositiveRate, FPRn =
FPn

TNn + FPn

To compare the relative performance of different tech-
niques, we plot the ROC curve for the ranked list of pixels
for the values 1 ≤ n ≤ P . An ideal change identification
algorithm should have a TPR of 1 and FPR of 0.

B. Synthetic Data

We generate synthetic data using the generative function
A+Bsin3(wt)+CN(0, 1) where N(0,1) is a random sample
from a standard normal distribution. A changes the mean of
the time series, B changes the seasonal component and C
changes the amount of noise in data. All synthetic time series
have 230 time steps corresponding to 10 years of data with
a season length of 23 steps. Figure 3(a) shows a synthetic
time series generated using this function.
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(a) Example of synthetic time se-
ries generated.
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(b) EVI time series that repre-
sents a typical change in agricul-
ture cycle in Zimbabwe and other
parts of Africa.

Figure 3. Example of synthetic and real time series with high seasonality.

1) Advantage of normalizing MD score: High inter-
annual variations and noise is observed in land cover types
such as farms and grasslands and tropical areas. MD scores
are often high for time series with these characteristics and
therefore a large number of false changes are detected if
MD scoring is used for areas with farms and grasslands as
dominant vegetation. We find that normalizing MD score
using permutation testing (MDPerm) or by modeling intra-
segment variations (MDBoot) is useful when segmentation
is used for such areas. To illustrate this fact we create a data
set of unchanged time series, some of which have high noise
(large C). N1 is a data set of 5000 unchanged time series
that are generated by using A=500, B=750 and varying noise
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(a) The ROC curve shows the advantage of normalizing
MD score using the two proposed approaches. We see
that MDBoot and MDPerm have better performance
than MD in presence of time series with differences in
noise and change characteristics.
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(b) The ROC curve corresponds to performance of the
approaches for synthetic time series data with high sea-
sonality. We see that MDPerm has poorer performance
in presence of high seasonality in data.

Figure 4. ROC curve for synthetic data. MDBoot(red),
MDPerm(black) and MD(green).

C between 10% to 50% of the amplitude. P1 is a set of
100 changed time series that are generated by using A=500,
B=750 and noise C=10% of the amplitude. To introduce
a change in P1, a change time point is chosen between
first and last year (i.e. between time step 23 and 207) and
amplitude B is decreased by 1% to 100% of the original
amplitude for all time series in P1. Note that P1 data set
has changed time series that we want to be detected, and
these time series have a moderate noise level. We find that
though time series of N1 have no actual change in model,
they sometimes have MD scores higher than time series
in P1 which leads to lower accuracy. Figure 4(a) shows the
ROC curve for MD, MDPerm and MDBoot for this data
set. The ROC curve shows that in presence of noisy time
series in data, MDPerm and MDBoot are able to achieve
a high TPR at low FPR by distinguishing MD scores due
to an actual change in stable time series from MD scores
due to noise in unstable time series.

2) Impact of high seasonality in time series: Random
permutation of time series destroys the seasonal structure
and overestimates the natural variation for land cover types
with high seasonal component, and thus MDPerm can
assign unusually low scores to these time series (such as
Figure 3(b)). To illustrate this fact, we generate a data
set P2 of high seasonal component using A = 500, B =
1500 and introduced changes between year 2 and year 9
by decreasing the magnitude of B for segment after the
change point by 10% to 90%. We use N1 as unchanged
time series data set. Figure 4(b) shows the ROC curve for
MD, MDPerm and MDBoot. The ROC curves show
that MDPerm (black curve) has poorer performance on
this data than both MD and MDBoot. MDBoot is able
to identify these changes because it accounts for seasonal
characteristic and resamples on the residuals after removing
the seasonal mean. Hence this normalization scheme is
particularly useful for identifying changes in farming cycles,
given the high seasonality in the associated EVI data.

3) Impact of changes in highly unstable time series:
Recall that in data set N1, MDBoot is able to significantly
outperform MD due to its ability to give higher scores
to actual subtle changes in stable time series relative to
unchanged, noisy time series. Here we illustrate a weakness
of MDBoot in finding changes occurring in noisy time
series. We find that for time series with a low signal to
noise ratio, MDBoot estimates a high natural variability
and thus assign low segmentation scores to actual changes
in noisy time series. To quantitatively demonstrate this fact,
we generate a data set P3 of high noise component using
A = 500, B = 750 and C varying between 25% to 50% of
amplitude. We introduced changes between year 2 and year
9 by decreasing the magnitude of B for segment after the
change point by 10% to 90%. Figure 5(a) is a time series
from P3 with a change at time step 150. For the unchanged
time series data we use the synthetic dataset N1. Figure 5(b)
shows that MDBoot has poorest performance on this data,
while MDPerm is not affected by adding this noise and
continues to show an improvement in accuracy over MD.
These results show that presence of large amount of noise
in the time series data can negate some of the advantages
of the normalization scheme used in MDBoot.

C. Deforestation in Mato Grosso

We present a case study of land cover change detection
in Mato Grosso, a state in Brazil which has deforestation
events that convert tropical rainforests to agricultural land.

1) Validation Data: Change detection studies are fre-
quently plagued by the lack of accurate and exhaustive
ground truth data which forces the evaluation process to be
more qualitative in nature. In this study, we have utilized
high quality validation data for deforestation generated by
an independent source, and are thus able to perform an
objective quantitative evaluation. Specifically, we obtained
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(a) Example of a synthetic noisy time
series with change at time step 150 (red
vertical line).
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(b) MDBoot (red curve) has poorer
performance in noisy time series data.

Figure 5. Performance of scoring schemes for noisy time series data.

deforestation boundaries generated by the PRODES (which
is considered as the gold standard for ground truth in
remote sensing community) for the years 2004 through 2007
for Mato Grosso (state in Brazil). The validation data is
in the form of polygons which represent the boundaries
of deforestation. Our EVI data is georeferenced by the
latitude and longitude value for the pixel center. A pixel
may have a partial overlap with a polygon. We consider
a pixel inside a polygon if the pixel center lies inside it,
otherwise it is considered outside the polygon. We use the
EVI data set for Mato Grosso (Brazil) which has both land
cover conversions and unchanged time series. The selected
area in Mato Grosso is monitored by PRODES. It consists
of about 800,000 locations at 1km spatial resolution. We
randomly under-sampled one-tenth of the unchanged time
series corresponding to forested areas. The data used has
66,922 unchanged locations and 21,066 locations that are
considered deforested by PRODES between the years 2004
to 2007. Since we evaluate different methods using TPR and
FPR, undersampling one of the classes does not change the
results, but does speed up our evaluation pipeline.

2) Results: Figure 6 shows TPR vs FPR for MD and
MDBoot algorithms. We see that both these scores have a
significant advantage over random case, showing the utility
of the proposed segmentation methodology for land cover
change detection problem. We are interested in the recall
that algorithms attain at low FPR values and therefore we
plot the TPR curve for FPR values till 0.1. We see that
MDBoot shows higher TPR than MD at low FPR and the
TPR for the two algorithms become equal at FPR of 0.1.
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Figure 6. TPR vs FPR for Mato Grosso data till FPR of 10%. MDBoot
is red curve, MD is green curve and cyan curve corresponds to random
case.

Earlier, we illustrated in the synthetic data experiments that
MDBoot does not perform well in presence of high noise.
Mato Grosso has tropical rainforests that suffer from poor
quality and highly noisy observations due to cloud cover.
Thus, we found that MDBoot gives relatively low score to
time series with changes that have high noise. We believe
that this is responsible for the relatively small improvement
of MDBoot over MD for this data. Figure 6 does not show
a ROC curve for MDPerm. This is because MDPerm
assigns significant p-value (p-value of 0) to many unchanged
time series that had even a slight variations due to noise
or cloud cover. Random permutations evenly spread out
this noise and the model estimates for two segments are
similar for the permuted time series. Due to this the model
difference from the original time series is higher than those
from permuted time series, giving a p-value of 0 for several
unchanged time series.. However, MDPerm has a TPR of
0.8 and FPR of 0.1 at p value ≤ 0.01. An FPR of 10% is
undesirable as number of changes is usually a small fraction
of vast forest cover and it is impossible for end user to
look at 10% of data to distinguish actual changes from false
positives. We also find that even though PRODES is very
effective in mapping land cover changes in Amazon, some
of the pixels which show a clear model change in EVI are
missed by it. These time series show up as false positives
for our segmentation algorithms, but in reality these are
deforestation events missed by PRODES.

VI. CONCLUSION

In this paper, we study a segmentation approach to land
cover change identification from EVI time series data and
propose two normalization approaches for model difference
segmentation score. From our evaluation on synthetic and
real data we find that due to the diversity in characteristics
of EVI data and the nature of land cover conversions,
different normalization approaches have their own strengths
and weaknesses.

The proposed normalization methods are described for
the model difference statistic of a seasonal nonparametric
model. However, this framework is more general and can



be used with other model representations such as Fourier
and wavelet coefficients. We plan to investigate the utility
of this framework with other models in different data sets
in our future work. Another research direction is to study
other segmentation scores for land cover change detection.
As an example, previous segmentation research has used
reduction in error to indicate the utility of segmentation of
time series into two segments [23], [18]. One approach to
normalize the reduction in error based segmentation score is
to use relative reduction in error [20]. An interesting study
would be to apply the normalization strategies proposed in
this paper to reduction in error-based segmentation scores
and investigate their performance.
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